至顶网软件频道消息:谷歌认为其深度学习系统可以解决电子健康记录困境。
在Google I / O大会上,该公司首席执行官Sundar Pichai介绍了该公司如何利用其人工智能和机器学习基础设施更好地预测医疗保健结果。该领域的多个前沿方向正在兴起,但大部分医疗数据都是非结构化的,有大量的麻烦。
对于谷歌来说,对医疗保健的兴趣更多的是要证明其在该领域的模型和算法。这也是Google Cloud Platform的一个自然扩展。谷歌还与Fitbit合作开发数据和健康API。有鉴于此,谷歌人工智能对医疗保健领域非常有兴趣。
在Google I / O大会期间发布的一篇论文中,该公司介绍了它如何使用电子健康记录。该公司指出,它与斯坦福大学、加州大学旧金山分校和芝加哥大学合作,探索深度学习模式如何应用于医院的患者。关键的发展是谷歌正在寻求使用数据。数据准备本身可以有许多分析工作。
谷歌的文章介绍了数据准备挑战:
我们假设这些技术将很好地转化进入医疗保健;具体而言,深度学习方法可以包含整个EHR,包括自由文本笔记,为广泛的临床问题提供预测,并且它的准确程度超过传统中最高水平的预测模型。我们的核心观点是,与其直接调整EHR数据,将其映射为一组高度组织化、结构化的预测变量,然后将这些变量馈送到统计模型中,我们还不如学习通过直接特征学习同步调谐输入并预测医疗事件。
谷歌表示,该公司的模型能够在预测意外再入院、出院和住院病死率方面进行扩展并准确预测。正如ZDNet先前报道的那样,人工智能正在被用来更好地改善护理,同时降低成本。参看:
谷歌指出,它具有统计意义上的重要性,而且还仅仅是一个开始。预测和深度学习模型还仅仅是在使用回顾性数据。
事实上,在医疗保健中还有很多其他的地方可以使用人工智能和机器学习。例如:
好文章,需要你的鼓励
在AI智能体的发展中,记忆能力成为区分不同类型的关键因素。专家将AI智能体分为七类:简单反射、基于模型反射、目标导向、效用导向、学习型、多智能体系统和层次化智能体。有状态的智能体具备数据记忆能力,能提供持续上下文,而无状态系统每次都重新开始。未来AI需要实现实时记忆访问,将存储与计算集成在同一位置,从而创造出具备人类般记忆能力的数字孪生系统。
中国人民大学和字节跳动联合提出Pass@k训练方法,通过给AI模型多次答题机会来平衡探索与利用。该方法不仅提升了模型的多样性表现,还意外改善了单次答题准确率。实验显示,经过训练的7B参数模型在某些任务上超越了GPT-4o等大型商业模型,为AI训练方法论贡献了重要洞察。
OpenAI首席执行官阿尔特曼表示,公司计划在不久的将来投入数万亿美元用于AI基础设施建设,包括数据中心建设等。他正在设计新型金融工具来筹集资金。阿尔特曼认为当前AI投资存在过度兴奋现象,类似于90年代互联网泡沫,但AI技术本身是真实且重要的。他承认GPT-5发布存在问题,并表示OpenAI未来可能会上市。
南加州大学等机构研究团队开发出突破性的"N-gram覆盖攻击"方法,仅通过分析AI模型生成的文本内容就能检测其是否记住了训练数据,无需访问模型内部信息。该方法在多个数据集上超越传统方法,效率提升2.6倍。研究还发现新一代AI模型如GPT-4o展现出更强隐私保护能力,为AI隐私审计和版权保护提供了实用工具。