至顶网软件频道消息:谷歌认为其深度学习系统可以解决电子健康记录困境。
在Google I / O大会上,该公司首席执行官Sundar Pichai介绍了该公司如何利用其人工智能和机器学习基础设施更好地预测医疗保健结果。该领域的多个前沿方向正在兴起,但大部分医疗数据都是非结构化的,有大量的麻烦。
对于谷歌来说,对医疗保健的兴趣更多的是要证明其在该领域的模型和算法。这也是Google Cloud Platform的一个自然扩展。谷歌还与Fitbit合作开发数据和健康API。有鉴于此,谷歌人工智能对医疗保健领域非常有兴趣。
在Google I / O大会期间发布的一篇论文中,该公司介绍了它如何使用电子健康记录。该公司指出,它与斯坦福大学、加州大学旧金山分校和芝加哥大学合作,探索深度学习模式如何应用于医院的患者。关键的发展是谷歌正在寻求使用数据。数据准备本身可以有许多分析工作。
谷歌的文章介绍了数据准备挑战:
我们假设这些技术将很好地转化进入医疗保健;具体而言,深度学习方法可以包含整个EHR,包括自由文本笔记,为广泛的临床问题提供预测,并且它的准确程度超过传统中最高水平的预测模型。我们的核心观点是,与其直接调整EHR数据,将其映射为一组高度组织化、结构化的预测变量,然后将这些变量馈送到统计模型中,我们还不如学习通过直接特征学习同步调谐输入并预测医疗事件。
谷歌表示,该公司的模型能够在预测意外再入院、出院和住院病死率方面进行扩展并准确预测。正如ZDNet先前报道的那样,人工智能正在被用来更好地改善护理,同时降低成本。参看:
谷歌指出,它具有统计意义上的重要性,而且还仅仅是一个开始。预测和深度学习模型还仅仅是在使用回顾性数据。
事实上,在医疗保健中还有很多其他的地方可以使用人工智能和机器学习。例如:
好文章,需要你的鼓励
Gartner预测,到2030年所有IT工作都将涉及AI技术的使用,这与目前81%的IT工作不使用AI形成鲜明对比。届时25%的IT工作将完全由机器人执行,75%由人类在AI辅助下完成。尽管AI将取代部分入门级IT职位,但Gartner认为不会出现大规模失业潮,目前仅1%的失业由AI造成。研究显示65%的公司在AI投资上亏损,而世界经济论坛预计AI到2030年创造的就业机会将比消除的多7800万个。
谷歌DeepMind团队开发的GraphCast是一个革命性的AI天气预测模型,能够在不到一分钟内完成10天全球天气预报,准确性超越传统方法90%的指标。该模型采用图神经网络技术,通过学习40年历史数据掌握天气变化规律,在极端天气预测方面表现卓越,能耗仅为传统方法的千分之一,为气象学领域带来了效率和精度的双重突破。
人工智能正从软件故事转向AI工厂基础,芯片、数据管道和网络协同工作形成数字化生产系统。这种新兴模式重新定义了性能衡量标准和跨行业价值创造方式。AI工厂将定制半导体、低延迟结构和大规模数据仪器整合为实时反馈循环,产生竞争优势。博通、英伟达和IBM正在引领这一转变,通过长期定制芯片合同和企业遥测技术,将传统体验转化为活跃的数字生态系统。
韩国成均馆大学研究团队开发了首个机器遗忘可视化评估系统Unlearning Comparator,解决了AI"选择性失忆"技术缺乏标准化评估的问题。系统通过直观界面帮助研究人员深入比较不同遗忘方法,并基于分析洞察开发出性能优异的引导遗忘新方法,为构建更负责任的AI系统提供重要工具支持。