至顶网软件频道消息: 微软公司副总裁、人工智能与研究首席技术官David Ku在一篇博客文章中宣布,微软收购位于美国加州伯克利的会话人工智能公司Semantic Machines。Semantic Machines开发的自然语言处理技术将被整合到微软产品中,如Cortana和Azure Bot Service。
Semantic Machines在其网站上表示,现有的自然语言系统如苹果Siri、微软Cortana和Google Now只能理解命令,而不能理解对话。但是,Semantic Machines的技术可以理解对话,而不仅仅是命令。目前各种数字助理可以处理的最典型的命令包括天气报告、音乐控制、设置计时器和创建提醒等。Ku表示:“为了进行丰富而有效的沟通,智能助理需要能够进行自然对话,而不仅仅是响应命令。”
Semantic Machines联合创始人兼首席执行官Daniel Roth是一位技术企业家,他还曾创建了Voice Signal Technologies公司(2007年被Nuance Communications以3亿美元收购)和Shaser BioScience公司(2012年被Spectrum Brands以1亿美元收购)。是Semantic Machines联合创始人兼首席财务官Damon Pender,之前曾是TeraDiode、Shaser BioScience和NeoSaej的首席财务官。Semantic Machines的联合创始人兼首席技术官Larry Gillick曾担任Dragon Systems研究副总裁、语音信号技术核心技术副总裁、Nuance移动设备研究副总裁、苹果Siri首席语音科学家。Semantic Machines联合创始人、首席科学家兼研究副总裁Dan Klein是加州大学伯克利分校的计算机科学教授,此前曾担任Adap.tv的首席科学家。
Semantic Machines的核心产品之一是其Conversation Engine,该引擎从语音或文本等自然输入中提取语义意图,然后生成一个自我更新学习框架,用于管理对话上下文、状态、特点以及最终用户的目标。此外,对话引擎自然语言生成(NLG)技术基于对话上下文与用户进行交流。Ku补充道,Semantic Machines利用机器学习来让用户“以更自然的方式发现、访问信息和服务并与之互动,大大减少工作量。”
微软成为首家为对话式AI系统增加全双工语音感的公司,让用户自然地与小冰和Cortana进行对话。小冰在美国、中国、印度、日本和印度尼西亚的用户达到2亿,对话总量超过300亿次,平均每次达30分钟。
好文章,需要你的鼓励
随着AI广泛应用推动数据中心建设热潮,运营商面临可持续发展挑战。2024年底美国已建成或批准1240个数据中心,能耗激增引发争议。除能源问题外,服务器和GPU更新换代产生的电子废物同样严重。通过采用模块化可修复系统、AI驱动资产跟踪、标准化数据清理技术以及与认证ITAD合作伙伴合作,数据中心可实现循环经济模式,在确保数据安全的同时减少环境影响。
剑桥大学研究团队首次系统探索AI在多轮对话中的信心判断问题。研究发现当前AI系统在评估自己答案可靠性方面存在严重缺陷,容易被对话长度而非信息质量误导。团队提出P(SUFFICIENT)等新方法,但整体问题仍待解决。该研究为AI在医疗、法律等关键领域的安全应用提供重要指导,强调了开发更可信AI系统的紧迫性。
超大规模云数据中心是数字经济的支柱,2026年将继续保持核心地位。AWS、微软、谷歌、Meta、甲骨文和阿里巴巴等主要运营商正积极扩张以满足AI和云服务需求激增,预计2026年资本支出将超过6000亿美元。然而增长受到电力供应、设备交付和当地阻力制约。截至2025年末,全球运营中的超大规模数据中心达1297个,总容量预计在12个季度内翻倍。
威斯康星大学研究团队开发出Prithvi-CAFE洪水监测系统,通过"双视觉协作"机制解决了AI地理基础模型在洪水识别上的局限性。该系统巧妙融合全局理解和局部细节能力,在国际标准数据集上创造最佳成绩,参数效率提升93%,为全球洪水预警和防灾减灾提供了更准确可靠的技术方案。