至顶网软件频道消息: 微软公司副总裁、人工智能与研究首席技术官David Ku在一篇博客文章中宣布,微软收购位于美国加州伯克利的会话人工智能公司Semantic Machines。Semantic Machines开发的自然语言处理技术将被整合到微软产品中,如Cortana和Azure Bot Service。
Semantic Machines在其网站上表示,现有的自然语言系统如苹果Siri、微软Cortana和Google Now只能理解命令,而不能理解对话。但是,Semantic Machines的技术可以理解对话,而不仅仅是命令。目前各种数字助理可以处理的最典型的命令包括天气报告、音乐控制、设置计时器和创建提醒等。Ku表示:“为了进行丰富而有效的沟通,智能助理需要能够进行自然对话,而不仅仅是响应命令。”
Semantic Machines联合创始人兼首席执行官Daniel Roth是一位技术企业家,他还曾创建了Voice Signal Technologies公司(2007年被Nuance Communications以3亿美元收购)和Shaser BioScience公司(2012年被Spectrum Brands以1亿美元收购)。是Semantic Machines联合创始人兼首席财务官Damon Pender,之前曾是TeraDiode、Shaser BioScience和NeoSaej的首席财务官。Semantic Machines的联合创始人兼首席技术官Larry Gillick曾担任Dragon Systems研究副总裁、语音信号技术核心技术副总裁、Nuance移动设备研究副总裁、苹果Siri首席语音科学家。Semantic Machines联合创始人、首席科学家兼研究副总裁Dan Klein是加州大学伯克利分校的计算机科学教授,此前曾担任Adap.tv的首席科学家。
Semantic Machines的核心产品之一是其Conversation Engine,该引擎从语音或文本等自然输入中提取语义意图,然后生成一个自我更新学习框架,用于管理对话上下文、状态、特点以及最终用户的目标。此外,对话引擎自然语言生成(NLG)技术基于对话上下文与用户进行交流。Ku补充道,Semantic Machines利用机器学习来让用户“以更自然的方式发现、访问信息和服务并与之互动,大大减少工作量。”
微软成为首家为对话式AI系统增加全双工语音感的公司,让用户自然地与小冰和Cortana进行对话。小冰在美国、中国、印度、日本和印度尼西亚的用户达到2亿,对话总量超过300亿次,平均每次达30分钟。
好文章,需要你的鼓励
在AI智能体的发展中,记忆能力成为区分不同类型的关键因素。专家将AI智能体分为七类:简单反射、基于模型反射、目标导向、效用导向、学习型、多智能体系统和层次化智能体。有状态的智能体具备数据记忆能力,能提供持续上下文,而无状态系统每次都重新开始。未来AI需要实现实时记忆访问,将存储与计算集成在同一位置,从而创造出具备人类般记忆能力的数字孪生系统。
香港理工大学联合多所高校开发的Mol-R1框架,首次实现了AI在分子发现中的透明推理。该系统通过PRID方法学习专家推理模式,配合MoIA迭代训练策略,不仅能准确生成分子结构,还能展示完整思考过程。相比现有模型,Mol-R1推理更简洁高效,为药物研发等领域的AI应用提供了重要的安全保障。
OpenAI首席执行官阿尔特曼表示,公司计划在不久的将来投入数万亿美元用于AI基础设施建设,包括数据中心建设等。他正在设计新型金融工具来筹集资金。阿尔特曼认为当前AI投资存在过度兴奋现象,类似于90年代互联网泡沫,但AI技术本身是真实且重要的。他承认GPT-5发布存在问题,并表示OpenAI未来可能会上市。
蚂蚁集团AWorld团队发表突破性研究,创建动态多智能体协作系统解决AI稳定性难题。研究灵感来源于船舶导航,通过执行智能体和守护智能体的协作机制,在GAIA测试中准确率达67.89%,稳定性提升17.3%,荣登开源项目排行榜第一名。该系统为构建可靠智能系统开辟新路径,具有广阔应用前景。