至顶网软件频道消息:根据2018年6月ABI Research的报告,到2021年使用数据训练人工智能模型进行预测分析的患者监护设备数量(包括用于家庭预防性医疗保健的人工智能)将从2017年的5.3万台增加至201万。预计到2021年,这种连接将为医院节省约520亿美元。
Venable LLP医疗合伙人兼联合主席Drew Gantt表示:“由于互联网、电子健康记录、个人健康记录、手机、可穿戴设备、数字医疗设备、传感器等许多其他因素,我们现在的数字医疗数据正在呈指数级的增长。这些数据将在短期内推动算法解决方案、临床决策支持工具和可视化工具。”
Gantt说,医疗企业应该专注于使用人工智能技术来解决问题、发现价值、促进使命、创造竞争优势,而不是仅仅为了技术或为了拥有最新的东西而使用它。
2018年6月1日,纽约西奈山医院(Mount Sinai Hospital)宣布与AI医疗初创公司RenalytixAI建立合作关系,打造一款AI工具来发现患有晚期肾病风险的患者。
根据Global Kidney Health Atlas报告显示,2017年全世界10人中就有1人患有慢性肾脏疾病。而且,传统上肾病患者在需要透析前不会开始治疗。
西奈山医院和RenalytixAI将把超过300万份患者健康记录放入人这个工智能工具中,以识别处于危险中的患者。通过分析大量数据的过程实现自动化,团队希望借此减少诊断错误,加快检测,让医院工作人员更专注于护理工作中。双方表示,他们预计这款AI新产品将在2019年第二季度实现商业化。
RenalytixAI创始人兼首席执行官James McCullough表示:“通过与西奈山医院等主要医疗机构合作,我们可以真正定义AI驱动型产品在肾脏疾病中的临床影响。我们还将专注于开发对于具有高风险糖尿病和少数人群的健康网络采用至关重要的报销和监管途径。”
RenalytixAI是EKF Diagnostics剥离出来的一个子公司,EKF Diagnostics是位于加迪夫的临床诊断公司,拥有一个生物指标组合,将其sTNFR生物指标转移给该公司。
McCullough说,让RenalytixAI引人注目的,是它专注于诊断与人工智能的结合。
“西奈山医院拥有来自大量高危人群的深层数据,如2型糖尿病患者和非洲血统人群,这两类人群是肾脏疾病的主要高危人群,临床知识与丰富数据集的结合,让我们能够创建一个风险评分系统,从这些高危人群的生物指标中抽取数据。这么做让这些数据具有很高的质量。”
“这个项目让个性化医疗和人口健康的结合取得了成果,” RenalytixAI Scientific Advisory委员会主席、西奈山伊坎医学院医学系主任、临床整合与人口健康Barbara Murphy博士这样说。
“通过及早发现危险人群,我们将有可能通过主动监测和管理来预防或减缓肾脏疾病的进程,这将对患者的生活产生持久而显着的影响,”Murphy补充说。
Gantt说,医院所拥有的数据仍然存在巨大挖掘潜力,有助于实现医院的使命。
“拥有大量数据的医院和其他企业应该制定一套数据业务计划——即使是仅用于内部非商业目的。人工智能可以增强对这些数据的分析。医疗行业应该专注于使用人工智能技术来解决问题、发现价值、推进自己的使命并创造竞争优势,而不是仅仅为了技术或者为了拥有最新的东西而使用它。”
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
加拿大女王大学研究团队首次对开源AI生态系统进行端到端许可证合规审计,发现35.5%的AI模型在集成到应用时存在许可证违规。他们开发的LicenseRec系统能自动检测冲突并修复86.4%的违规问题,揭示了AI供应链中系统性的"许可证漂移"现象及其法律风险。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
这项由剑桥大学、清华大学和伊利诺伊大学合作的研究首次将扩散大语言模型引入语音识别领域,开发出Whisper-LLaDA系统。该系统具备双向理解能力,能够同时考虑语音的前后文信息,在LibriSpeech数据集上实现了12.3%的错误率相对改进,同时在大多数配置下提供了更快的推理速度,为语音识别技术开辟了新的发展方向。