麻省理工学院的研究人员表示,他们已经开发出了一种能够在不到一秒钟内处理磁共振图像的算法,这对于医疗行业来说将是一项至关重要的进展。
目前,医生需要对比两个在不同时间单独拍摄MRI扫描图像,以追踪人体随着时间推移发生的变化。但是,进行这种对比是既复杂又耗时的,因为这个过程需要仔细排列这两个图像以便进行准确测量。医生需要将图像上的所有位置处理为3-D图,而当前的计算机需要花费很多时间来完成此操作。
MRI扫描的问题在于其中包含的信息量。基本上每个图像都是由数百个彼此叠置的二维图像组成的,以创建一个立体的3-D图,反过来又构成了被称为体素的三维像素。当对比两个MRI扫描图的时候,计算机必须对数百万体素进行排序,以确定它们在一个新的、统一图像中的位置。
由于这个过程需要几个小时才能完成,因此如果有大量图像要处理的话,医生就不得不等上数百个小时。麻省理工学院的研究人员说,使用具有更强处理能力的计算机是不切实际的,所以他们创建了一个名为“VoxelMorph”的新卷积神经网络,并称其更适合完成这项任务。
麻省理工学院的研究人员使用更多的7000个公开可用的人脑MRI扫描图来训练VoxelMorph。像VoxelMorph这样的神经网络将数据推入前端,然后通过多个节点传递给其他节点来加速对比的过程。同时,这个神经网络也会学习不同的常见体素组合及其解剖形状。
MIT News报道称:“这种方法使用CNN和被称为空间变换器的改进计算层,找出一个MRI扫描中的体素与其他扫描中的体素之间的相似性。在这个过程中,算法会学习关于体素组的信息——例如两个扫描之间共有的解剖形状——用于计算可应用于任何扫描对的优化参数。”
在这种训练之后,麻省理工学院的研究人员向VoxelMorph输入了250个新扫描图,以测试其有效性。该算法在两分钟内完成了这些扫描的处理,相比之下传统MRI分析程序需要大量时间。该测试使用常规的CPU,不过当研究人员使用GPU的时候,这个过程仅用了一秒钟时间。
麻省理工学院的研究小组表示,VoxelMorph在医疗领域有着显著应用,甚至可以改变医生进行某种手术的方式。例如,可以在操作过程中创建最新的扫描并将这些图像用于实时分析。
好文章,需要你的鼓励
OpenAI发布ChatGPT Atlas AI浏览器,支持网页问答、历史查询和邮件改写等功能。同时曝光秘密项目Mercury,雇佣约100名前投行精英以每小时150美元训练AI金融模型。公司还因用户滥用Sora生成马丁·路德·金视频而暂停相关功能。此外,医疗AI搜索引擎OpenEvidence获2亿美元融资,估值60亿美元。
浙江大学团队提出动态专家搜索方法,让AI能根据不同问题灵活调整内部专家配置。该方法在数学、编程等任务上显著提升推理准确率,且不增加计算成本。研究发现不同类型问题偏爱不同专家配置,为AI推理优化开辟新路径。
随着Chrome和Safari主导浏览器市场,众多替代浏览器正在挑战这些行业巨头。本文梳理了当前顶级替代浏览器,包括AI驱动的浏览器如Perplexity的Comet、Arc公司的Dia、Opera的Neon和OpenAI的Atlas;注重隐私的浏览器如Brave、DuckDuckGo、Ladybird和Vivaldi;以及专注特定领域的浏览器如Opera Air和SigmaOS。这些浏览器通过AI集成、隐私保护、定制化和专注用户福祉等特色功能,为用户提供了多样化的浏览体验选择。
清华大学研究团队提出SIRI方法,通过"压缩-扩张"交替训练策略,成功解决了大型推理模型"话多且准确率低"的问题。实验显示,该方法在数学竞赛题上将模型准确率提升43.2%的同时,输出长度减少46.9%,真正实现了效率与性能的双重优化,为AI模型训练提供了新思路。