麻省理工学院的研究人员表示,他们已经开发出了一种能够在不到一秒钟内处理磁共振图像的算法,这对于医疗行业来说将是一项至关重要的进展。
目前,医生需要对比两个在不同时间单独拍摄MRI扫描图像,以追踪人体随着时间推移发生的变化。但是,进行这种对比是既复杂又耗时的,因为这个过程需要仔细排列这两个图像以便进行准确测量。医生需要将图像上的所有位置处理为3-D图,而当前的计算机需要花费很多时间来完成此操作。
MRI扫描的问题在于其中包含的信息量。基本上每个图像都是由数百个彼此叠置的二维图像组成的,以创建一个立体的3-D图,反过来又构成了被称为体素的三维像素。当对比两个MRI扫描图的时候,计算机必须对数百万体素进行排序,以确定它们在一个新的、统一图像中的位置。
由于这个过程需要几个小时才能完成,因此如果有大量图像要处理的话,医生就不得不等上数百个小时。麻省理工学院的研究人员说,使用具有更强处理能力的计算机是不切实际的,所以他们创建了一个名为“VoxelMorph”的新卷积神经网络,并称其更适合完成这项任务。
麻省理工学院的研究人员使用更多的7000个公开可用的人脑MRI扫描图来训练VoxelMorph。像VoxelMorph这样的神经网络将数据推入前端,然后通过多个节点传递给其他节点来加速对比的过程。同时,这个神经网络也会学习不同的常见体素组合及其解剖形状。
MIT News报道称:“这种方法使用CNN和被称为空间变换器的改进计算层,找出一个MRI扫描中的体素与其他扫描中的体素之间的相似性。在这个过程中,算法会学习关于体素组的信息——例如两个扫描之间共有的解剖形状——用于计算可应用于任何扫描对的优化参数。”
在这种训练之后,麻省理工学院的研究人员向VoxelMorph输入了250个新扫描图,以测试其有效性。该算法在两分钟内完成了这些扫描的处理,相比之下传统MRI分析程序需要大量时间。该测试使用常规的CPU,不过当研究人员使用GPU的时候,这个过程仅用了一秒钟时间。
麻省理工学院的研究小组表示,VoxelMorph在医疗领域有着显著应用,甚至可以改变医生进行某种手术的方式。例如,可以在操作过程中创建最新的扫描并将这些图像用于实时分析。
好文章,需要你的鼓励
在AI智能体的发展中,记忆能力成为区分不同类型的关键因素。专家将AI智能体分为七类:简单反射、基于模型反射、目标导向、效用导向、学习型、多智能体系统和层次化智能体。有状态的智能体具备数据记忆能力,能提供持续上下文,而无状态系统每次都重新开始。未来AI需要实现实时记忆访问,将存储与计算集成在同一位置,从而创造出具备人类般记忆能力的数字孪生系统。
香港理工大学联合多所高校开发的Mol-R1框架,首次实现了AI在分子发现中的透明推理。该系统通过PRID方法学习专家推理模式,配合MoIA迭代训练策略,不仅能准确生成分子结构,还能展示完整思考过程。相比现有模型,Mol-R1推理更简洁高效,为药物研发等领域的AI应用提供了重要的安全保障。
OpenAI首席执行官阿尔特曼表示,公司计划在不久的将来投入数万亿美元用于AI基础设施建设,包括数据中心建设等。他正在设计新型金融工具来筹集资金。阿尔特曼认为当前AI投资存在过度兴奋现象,类似于90年代互联网泡沫,但AI技术本身是真实且重要的。他承认GPT-5发布存在问题,并表示OpenAI未来可能会上市。
蚂蚁集团AWorld团队发表突破性研究,创建动态多智能体协作系统解决AI稳定性难题。研究灵感来源于船舶导航,通过执行智能体和守护智能体的协作机制,在GAIA测试中准确率达67.89%,稳定性提升17.3%,荣登开源项目排行榜第一名。该系统为构建可靠智能系统开辟新路径,具有广阔应用前景。