麻省理工学院的研究人员表示,他们已经开发出了一种能够在不到一秒钟内处理磁共振图像的算法,这对于医疗行业来说将是一项至关重要的进展。
目前,医生需要对比两个在不同时间单独拍摄MRI扫描图像,以追踪人体随着时间推移发生的变化。但是,进行这种对比是既复杂又耗时的,因为这个过程需要仔细排列这两个图像以便进行准确测量。医生需要将图像上的所有位置处理为3-D图,而当前的计算机需要花费很多时间来完成此操作。
MRI扫描的问题在于其中包含的信息量。基本上每个图像都是由数百个彼此叠置的二维图像组成的,以创建一个立体的3-D图,反过来又构成了被称为体素的三维像素。当对比两个MRI扫描图的时候,计算机必须对数百万体素进行排序,以确定它们在一个新的、统一图像中的位置。
由于这个过程需要几个小时才能完成,因此如果有大量图像要处理的话,医生就不得不等上数百个小时。麻省理工学院的研究人员说,使用具有更强处理能力的计算机是不切实际的,所以他们创建了一个名为“VoxelMorph”的新卷积神经网络,并称其更适合完成这项任务。
麻省理工学院的研究人员使用更多的7000个公开可用的人脑MRI扫描图来训练VoxelMorph。像VoxelMorph这样的神经网络将数据推入前端,然后通过多个节点传递给其他节点来加速对比的过程。同时,这个神经网络也会学习不同的常见体素组合及其解剖形状。
MIT News报道称:“这种方法使用CNN和被称为空间变换器的改进计算层,找出一个MRI扫描中的体素与其他扫描中的体素之间的相似性。在这个过程中,算法会学习关于体素组的信息——例如两个扫描之间共有的解剖形状——用于计算可应用于任何扫描对的优化参数。”
在这种训练之后,麻省理工学院的研究人员向VoxelMorph输入了250个新扫描图,以测试其有效性。该算法在两分钟内完成了这些扫描的处理,相比之下传统MRI分析程序需要大量时间。该测试使用常规的CPU,不过当研究人员使用GPU的时候,这个过程仅用了一秒钟时间。
麻省理工学院的研究小组表示,VoxelMorph在医疗领域有着显著应用,甚至可以改变医生进行某种手术的方式。例如,可以在操作过程中创建最新的扫描并将这些图像用于实时分析。
好文章,需要你的鼓励
Coursera在2025年连接大会上宣布多项AI功能更新。10月将推出角色扮演功能,通过AI人物帮助学生练习面试技巧并获得实时反馈。新增AI评分系统可即时批改代码、论文和视频作业。同时引入完整性检查和监考系统,通过锁定浏览器和真实性验证打击作弊行为,据称可减少95%的不当行为。此外,AI课程构建器将扩展至所有合作伙伴,帮助教育者快速设计课程。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
英国政府研究显示,神经多样性员工从AI聊天机器人中获得的收益远超普通同事。在Microsoft 365 Copilot试点中,神经多样性员工满意度达90%置信水平,推荐度达95%置信水平,均显著高于其他用户。患有ADHD和阅读障碍的员工表示AI工具为他们提供了前所未有的工作支持,特别是在报告撰写方面。研究表明,AI工具正在填补传统无障碍技术未能解决的职场差距,为残障人士提供了隐形的工作辅助。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。