微软LinkedIn部门正在为LinkedIn新闻文章推出一项新的翻译功能,该功能依赖微软的一些核心人工智能技术。
鉴于超过一半的LinkedIn用户不在美国,LinkedIn官员认为需要简化新闻Feed中的跨语言交流。该公司的官员们表示,翻译会员发表的帖子是LinkedIn最为需要的功能之一。
尽管LinkedIn在开发新的动态翻译功能——被称为“参见翻译”( See Translation)——时大量使用了自己的技术和资源,但LinkedIn的官员指出,他们确实与微软的一些团队进行了合作并使用对方的一些技术。
“参见翻译”( See Translation)使用了微软的Azure文本分析程序接口,它可以检测多达120种语言,还使用了微软的翻译文本(Microsoft Translator Text)程序接口,这是微软另一项认知服务(Cognitive Services)。LinkedIn在6月28日发布的消息称,翻译文本API可以为特定域提供定制化翻译模板的功能,例如新闻Feed。
LinkedIn的官员们表示,“参见翻译”( See Translation)功能还建立在LinkedIn最初开发的各种开放源代码框架之上,包括Kafka、Samza和Rest.li,用于内容语言检测和标记。
LinkedIn工程团队撰写了一篇博客文章,扼要介绍了“参见翻译”( See Translation)功能是如何开发出来的。
LinkedIn官员们还于6月28日宣布在全球推出全新的LinkedIn QR号码功能,该功能允许用户快速查找他们刚刚遇到的人,以代替交换名片或电话号码。LinkedIn QR号码功能可在全球LinkedIn iOS和安卓版应用程序中使用。
微软在2016年收购了LinkedIn,并允许该业务在很多方面继续保持独立运营。微软和LinkedIn已经在各种产品和服务之间进行了一些整合,但LinkedIn在使用自己的数据中心和自己开发工具来构建其产品和服务。
好文章,需要你的鼓励
这项由浙江大学与阿里巴巴通义实验室联合开展的研究,通过创新的半在线强化学习方法,显著提升了AI界面助手在多步骤任务中的表现。UI-S1-7B模型在多个基准测试中创造了7B参数规模的新纪录,为GUI自动化代理的发展开辟了新的技术路径。
阿里巴巴联合浙江大学开发的OmniThink框架让AI学会像人类一样慢思考写作。通过信息树和概念池的双重架构,系统能够动态检索信息、持续反思,突破了传统AI写作内容浅薄重复的局限。实验显示该方法在文章质量各维度均显著超越现有最强基线,知识密度提升明显,为长文本生成研究开辟了新方向。
新加坡国立大学研究人员开发出名为AiSee的可穿戴辅助设备,利用Meta的Llama模型帮助视障人士"看见"周围世界。该设备采用耳机形态,配备摄像头作为AI伴侣处理视觉信息。通过集成大语言模型,设备从简单物体识别升级为对话助手,用户可进行追问。设备运行代理AI框架,使用量化技术将Llama模型压缩至10-30亿参数在安卓设备上高效运行,支持离线处理敏感文档,保护用户隐私。
腾讯混元3D 2.0是一个革命性的3D生成系统,能够从单张图片生成高质量的带纹理3D模型。该系统包含形状生成模块Hunyuan3D-DiT和纹理合成模块Hunyuan3D-Paint,采用创新的重要性采样和多视角一致性技术,在多项评估指标上超越现有技术,并提供用户友好的制作平台。作为开源项目,它将大大降低3D内容创作门槛,推动3D技术的普及应用。