7月5日,Kyligence融资暨新产品发布会在上海中心大厦举行。Kyligence 团队宣布正式发布下一代企业级数据仓库产品与解决方案 Kyligence Enterprise v3.0,及云端一站式大数据分析解决方案Kyligence Cloud v2.0。新版解决方案革命性地实现了自动建模功能,并将在查询提速15倍的同时节省50%存储空间。
Kyligence Enterprise v3.0,引领现代数据仓库发展方向
作为本次发布会的重头戏之一,Kyligence 联合创始人兼CTO李扬,详细介绍了新版Kyligence Enterprise如何在保持PB级数据集上亚秒级查询响应速度的同时,革命性地实现自动化建模以承载企业日益增长的自动化需求。
“在今天数据呈指数级爆炸的时代,绝大部分的数据仓库项目仍然使用人工进行操作,这种原始的基于人工的数据分析方式显然已经远不能满足快速增长的业务需求。”Kyligence 联合创始人兼CTO李扬在发布会上介绍道,“自动化是唯一可以解决这个问题的办法。”
新版Kyligence Enterprise引入了大量的机器学习技术,如自动建模技术可基于分析师的历史查询行为及学习记录,智能化地推荐数据建模,自动化地调优性能,且推荐和加速相关业务分析场景。同时,该产品还支持在企业的本地集群和云端部署在线数据分析服务,满足了企业的全场景分析需求。
在产品架构上,新版Kyligence Enterprise 采用了高性能的融合架构,实现了关键业务的亚秒级查询延迟,也支持海量数据的自主探索;数据源可对接分布式平台Hadoop的多重数据引擎,也可以对接传统的RDBMS;数据种类上,既可以对接实时数据流,也可以进行批处理。
“对比上一代查询引擎,新版Kyligence Enterprise 可实现查询提速15倍的同时节省50%存储空间,而对比市场上的同类查询产品,根据数据仓库典型查询场景测试中查询的完成度与查询的性能比较来看,都具有显著优势。”李扬介绍道,Kyligence Enterprise v3.0具有出色的数据分析能力,它的出现将有效降低企业人力成本,并成倍提升企业生产效率。
Kyligence Cloud v2.0,实现云上亚秒级响应
作为Kyligence云计算的核心产品,Kyligence Cloud 实现了云上对PB级数据的交互式分析与关键业务查询的亚秒级响应,为用户提供了简单、无缝的集成体验。
此次发布的Kyligence Cloud v2.0集成了Kyligence Enterprise v3.0大数据分析引擎,用户可以在统一的用户界面上实现集群部署、数据接入、数据建模和查询分析。同时,Kyligence Cloud v2.0还支持公有云更安全的访问授权方式,如AWS IAM Role,在最大安全性下充分利用客户云账户的计算资源。
李扬表示,Kyligence期待能与客户一起,实现以大数据和云计算作为双重引擎,加快企业数字化转型,以数据驱动企业的商业决策和业务发展,提升企业在新常态下的发展新动能和竞争力。
目前,除了Azure和AWS,Kyligence Cloud还加入了对阿里云和青云(应用市场)的支持,助力更多国内外客户将大数据分析迁移至云端。同时,Kyligence Cloud还新增了对Amazon Redshift和Azure SQL Data Warehouse的连接支持,与云端数据仓库一起,实现大规模高并发BI应用,加速数仓上的关键业务查询。
好文章,需要你的鼓励
LibreOffice 25.8版本以"更智能、更快速、更可靠"为特色正式发布。新版本在多个方面实现性能优化,包括启动速度、文档滚动和文件打开速度的显著提升。该版本增强了对微软Office文档格式的兼容性,改进了连字符处理和字体兼容性,Calc表格组件新增十多个函数以更好支持Excel文件导入。值得注意的是,LibreOffice 25.8首次支持PDF 2.0格式导出,并具备PDF数字加密和签名功能。新版本提高了系统要求,不再支持Windows 7/8系列和32位系统。
谷歌DeepMind团队开发出ViNT视觉导航系统,让机器人像人类一样仅通过"看"就能在陌生环境中导航。该系统模仿ChatGPT的学习方式,通过分析600万个导航轨迹掌握通用导航能力,在未知环境中的成功率达87%。这一突破将推动物流配送、家庭服务、搜救等领域的机器人应用发展。
微软AI首席执行官苏莱曼发文称,研究AI福利和意识"既不成熟又危险",认为这会加剧人类对AI的不健康依赖。而Anthropic、OpenAI等公司正积极研究AI意识问题,招聘相关研究人员。业界对AI是否会产生主观体验及其权利问题分歧严重。前OpenAI员工认为可以同时关注多个问题,善待AI模型成本低且有益。随着AI系统改进,关于AI权利和意识的辩论预计将升温。
谷歌DeepMind推出AlphaFold3,革命性提升分子结构预测能力。该AI模型采用创新扩散网络架构,能够精确预测蛋白质与DNA、RNA、药物等分子的相互作用,准确率比传统方法提高50%以上。这一突破将显著加速新药开发,推动基础科学研究,并通过免费开放服务促进全球科研合作,标志着生命科学研究进入AI驱动的新时代。