相比其他竞争对手,谷歌在企业云支持工具的商业化方面是后来者,但谷歌正在迅速制定一项差异化战略,旨在让软件开发人员使用谷歌云能够做到定制化。
Google Cloud首席执行官Diane Greene说:“我们拥有这种底层的、令人难以置信的先进的基础设施。我们让大家可以利用人工智能,而且比在其他任何地方使用都更安全,我们有相应的工程技术来帮助真正利用起人工智能,倾听客户心声了解他们想要什么。”
谷歌今天在旧金山举行的Google Cloud Next大会上,谈到了谷歌将其云功能转变为面向企业客户的商业化产品的过程,并概述了哪些创新推动着市场发展的方向。
打造云路线图
就在踏上云旅程仅两年后,Google Cloud已经拥有7个应用和超过10亿活跃用户。 Greene将他们的快速成功归功于在技术、基础设施和安全方面的核心竞争力。
“我们管理数据和人工智能的能力,与我们在开源、安全和底层基础设施的能力结合到一起,会让每个人都承认,这是世界上最先进的技术,是一个非常无与伦比的组合,”Greene说。
即便如此,谷歌仍然必须在新的云领域中证明自己。为了获得客户的信任,谷歌制定了将这些工具推向市场的发展路线图。Greene指出,一旦客户信赖了谷歌的云产品,谷歌就可以和客户一起,以更加定制化的方法开发解决方案和制定方案策略。
“工程师从客户得到客户的需求,但是在了解客户之后,他们可以开发出客户不知道的、但是能够以更强大方式解决问题的方案,”Greene说。
除了客户关心的问题之外,Google Cloud还专注于为所有企业用户提供安全性和人工智能。在今天的会议主题演讲中,Greene称安全性是企业将运营迁移到云端的首要担忧,这也是为什么谷歌说已经将安全深入整合到各个层面,而人工智能也因为有潜力为各行各业消除繁琐的、具有挑战性的工作而成为最大的机会。
Greene表示,“所有这些让人头疼的工作都会消除,没人想做。然后人员重新分配,因为我们仍然需要这些人做事。释放他们的精力,想想他们未来会有的新发现。”
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。