如果只是复制AWS成功的部分,为什么还要向市场推出自己的云计算方案?参与企业级云计算的竞争对手们(如微软Azure和Google Cloud平台)必须向客户回答这个问题。
谷歌的答案很简单:自己的云服务是即时可用的,相比之下AWS可配置的服务可能需要下些功夫。
亚马逊和谷歌是完全不同的。亚马逊拥有更大的客户群,在企业级领域让谷歌相形见绌。此外,谷歌正在利用TensorFlow开源机器学习平台以及Kubernetes容器编排等技术。
另一方面,亚马逊把高可组合性作为一种创新手段。这两种方式有利有弊,客户会根据他们的预算来决定怎样折中更平衡。
谷歌认为,与核心保持一致会让云服务变得简单易用,这是客户无法拒绝的。而这与AWS的做法完全不同。AWS的服务(例如DynamoDB NoSQL数据库)往往缺乏通用方法。
不同场上有不同的应用界面,你必须了解这一点。谷歌正在做的是用一套通用做法来简化这个问题。这意味着至少在谷歌内部,用户可以使用本地或云端启动和运行云服务,学习曲线要短得多。
但是谷歌以外的环境呢? 即使谷歌内部是通用的,但如果你去Azure或AWS,彼此之间仍然不是通用的。所以使用多个云的客户仍然需要学习所需的相应技能。Google Cloud平台首席执行官Diane Greene承认,需要对通用性进行权衡。
好文章,需要你的鼓励
Instabase 公司完成 1 亿美元 D 轮融资,估值 12.4 亿美元。该公司提供非结构化数据处理平台,可从多种文件中提取信息并标准化。新资金将用于增强数据提取、分析和搜索功能,以满足企业 AI 需求。
人工智能在建筑设计领域正展现出惊人潜力。从生成令人赏心悦目的建筑效果图,到创造无限游戏世界,AI 正逐步改变设计流程。尽管人类仍是核心创作者,但 AI 辅助工具正迅速普及,未来可能会大幅提升设计效率和质量。这一趋势引发了对 AI 取代人类建筑师的担忧,也带来了硬件革命和地缘政治影响。
研究显示,高收入公司的CEO正将人工智能置于业务战略的核心地位。欧美企业声称已具备AI项目的基础条件。专家建议避免过度乐观,关注投资回报,构建稳健的数据基础,并优先考虑循序渐进的推广策略。研究还发现,最成功的公司往往是那些高层领导有意识地不直接参与AI战略制定的公司。
微软研究团队开发了名为 MatterGen 的扩散模型系统,用于高效发现新材料。该系统可从大量候选材料中筛选出具有特定性质的新材料,比传统方法快速高效得多。这项技术有望加速电池等关键领域的创新,推动材料科学的发展。