如果只是复制AWS成功的部分,为什么还要向市场推出自己的云计算方案?参与企业级云计算的竞争对手们(如微软Azure和Google Cloud平台)必须向客户回答这个问题。
谷歌的答案很简单:自己的云服务是即时可用的,相比之下AWS可配置的服务可能需要下些功夫。
亚马逊和谷歌是完全不同的。亚马逊拥有更大的客户群,在企业级领域让谷歌相形见绌。此外,谷歌正在利用TensorFlow开源机器学习平台以及Kubernetes容器编排等技术。
另一方面,亚马逊把高可组合性作为一种创新手段。这两种方式有利有弊,客户会根据他们的预算来决定怎样折中更平衡。
谷歌认为,与核心保持一致会让云服务变得简单易用,这是客户无法拒绝的。而这与AWS的做法完全不同。AWS的服务(例如DynamoDB NoSQL数据库)往往缺乏通用方法。
不同场上有不同的应用界面,你必须了解这一点。谷歌正在做的是用一套通用做法来简化这个问题。这意味着至少在谷歌内部,用户可以使用本地或云端启动和运行云服务,学习曲线要短得多。
但是谷歌以外的环境呢? 即使谷歌内部是通用的,但如果你去Azure或AWS,彼此之间仍然不是通用的。所以使用多个云的客户仍然需要学习所需的相应技能。Google Cloud平台首席执行官Diane Greene承认,需要对通用性进行权衡。
好文章,需要你的鼓励
北京大学团队开发的DragMesh系统通过简单拖拽操作实现3D物体的物理真实交互。该系统采用分工合作架构,结合语义理解、几何预测和动画生成三个模块,在保证运动精度的同时将计算开销降至现有方法的五分之一。系统支持实时交互,无需重新训练即可处理新物体,为虚拟现实和游戏开发提供了高效解决方案。
AI硬件的竞争才刚刚开始,华硕Ascent GX10这样将专业级算力带入桌面级设备的尝试,或许正在改写个人AI开发的游戏规则。
达尔豪斯大学研究团队系统性批判了当前AI多智能体模拟的静态框架局限,提出以"动态场景演化、智能体-环境共同演化、生成式智能体架构"为核心的开放式模拟范式。该研究突破传统任务导向模式,强调AI智能体应具备自主探索、社会学习和环境重塑能力,为政策制定、教育创新和社会治理提供前所未有的模拟工具。