如果只是复制AWS成功的部分,为什么还要向市场推出自己的云计算方案?参与企业级云计算的竞争对手们(如微软Azure和Google Cloud平台)必须向客户回答这个问题。
谷歌的答案很简单:自己的云服务是即时可用的,相比之下AWS可配置的服务可能需要下些功夫。
亚马逊和谷歌是完全不同的。亚马逊拥有更大的客户群,在企业级领域让谷歌相形见绌。此外,谷歌正在利用TensorFlow开源机器学习平台以及Kubernetes容器编排等技术。
另一方面,亚马逊把高可组合性作为一种创新手段。这两种方式有利有弊,客户会根据他们的预算来决定怎样折中更平衡。
谷歌认为,与核心保持一致会让云服务变得简单易用,这是客户无法拒绝的。而这与AWS的做法完全不同。AWS的服务(例如DynamoDB NoSQL数据库)往往缺乏通用方法。
不同场上有不同的应用界面,你必须了解这一点。谷歌正在做的是用一套通用做法来简化这个问题。这意味着至少在谷歌内部,用户可以使用本地或云端启动和运行云服务,学习曲线要短得多。
但是谷歌以外的环境呢? 即使谷歌内部是通用的,但如果你去Azure或AWS,彼此之间仍然不是通用的。所以使用多个云的客户仍然需要学习所需的相应技能。Google Cloud平台首席执行官Diane Greene承认,需要对通用性进行权衡。
好文章,需要你的鼓励
当前世界充满变数,IT领域除AI外鲜少受到关注。从气候变化到地缘政治紧张局势,IT在公众讨论中边缘化。这在技术变革关键时刻十分危险。CEO、高管和媒体对IT缺乏深度思考,普遍持"不坏就别谈"的态度。CIO需要重新获得利益相关者关注,克服对IT运营的冷漠和无知。技术文盲问题严重,大多数人从未构建过IT系统。IT行业需要重新赢得人心,大幅提升公众IT知识水平。
OpenAI团队的最新研究揭示了大语言模型产生幻觉的根本原因:AI就像面临难题的学生,宁愿猜测也不愿承认无知。研究发现,即使训练数据完全正确,统计学原理也会导致AI产生错误信息。更重要的是,现有评估体系惩罚不确定性表达,鼓励AI进行猜测。研究提出了显式置信度目标等解决方案,通过改革评估标准让AI学会诚实地说"不知道",为构建更可信的AI系统指明方向。
技术驱动的变革比以往更加频繁,但成功并不能得到保证。Gartner研究显示,只有五分之一的组织能够在75%或更多时间内从转型项目中获得预期收益。其余都是昂贵的失败。有效的变革管理能够提高技术采用率,服务于业务目标。变革管理不再是边缘活动或软技能,而是决定新举措是否能够创造商业价值的核心绩效学科。
字节跳动AI实验室提出"逆向工程推理"新范式,通过从优质作品反推思考过程的方式训练AI进行创意写作。该方法创建了包含2万个思考轨迹的DeepWriting-20K数据集,训练的DeepWriter-8B模型在多项写作评测中媲美GPT-4o等顶级商业模型,为AI在开放性创意任务上的应用开辟了新道路。