至顶网软件频道消息: 谷歌今天开始在自己的公有云上提供了一个新的图形加速器,以更好的支持人工智能和虚拟桌面工作负载。
据悉,谷歌采用的芯片是Nvidia的P4,这让谷歌云平台支持的Nvidia GPU数量增加到4个,而且所有这些都是从2017年2月以来添加的。Nvidia扩展其GPU产品线的步伐反映了企业采用人工智能的速度越来越快。
P4的起价为每小时60美分,是4款GPU中价格第二低的。在处理最多4个字节的单精度值时,该芯片可提供5.5 teraflops的性能。
Nvidia还为P4配备了8GB GDDR5内存,专门设计用于GPU。片上芯片内存要比普通内存更快,因为让数据更接近GPU核心,从而减少延迟。
在人工智能部署方面,谷歌认为基于云的P4主要用于机器学习推理,也就是数据处理神经网络在经过适当训练之后可以在生产环境中做的事情,这是一种完全不同的任务,有时候利用更强大的GPU可以实现更好的性能。
P4也适用于虚拟桌面环境。它采用了Grid,这个Nvidia软件可以在多个虚拟机之间分配GPU硬件资源。此外,谷歌还支持合作伙伴Teradici的工具,该工具可以将运行在虚拟机中应用流式传输到员工的本地设备上。
谷歌瞄准的第三种场景是视频流。根据Nvidia的说法,该芯片有3个视频处理引擎,可以实时转码多达35个高清流。
另外,GPU在谷歌的技术战略中扮演着越来越重要的作用,因此Nvidia也成为谷歌的一个重要合作伙伴。话虽如此,但谷歌并不完全依赖于这家AI处理器的芯片制造商。谷歌还支持Tensor Processing Units,这款内部设计的芯片可定制用于运行神经网络,每个神经网络可提供180 teraflops的巨大计算能力。
好文章,需要你的鼓励
北京大学研究团队开发出基于RRAM芯片的高精度模拟矩阵计算系统,通过将低精度模拟运算与迭代优化结合,突破了模拟计算的精度瓶颈。该系统在大规模MIMO通信测试中仅需2-3次迭代就达到数字处理器性能,吞吐量和能效分别提升10倍和3-5倍,为后摩尔时代计算架构提供了新方向。
普拉大学研究团队开发的BPMN助手系统利用大语言模型技术,通过创新的JSON中间表示方法,实现了自然语言到标准BPMN流程图的自动转换。该系统不仅在生成速度上比传统XML方法快一倍,在流程编辑成功率上也有显著提升,为降低业务流程建模的技术门槛提供了有效解决方案。
谷歌宣布已将约3万个生产软件包移植到Arm架构,计划全面转换以便在自研Axion芯片和x86处理器上运行工作负载。YouTube、Gmail和BigQuery等服务已在x86和Axion Arm CPU上运行。谷歌开发了名为CogniPort的AI工具协助迁移,成功率约30%。公司声称Axion服务器相比x86实例具有65%的性价比优势和60%的能效提升。
北京大学联合团队发布开源统一视频模型UniVid,首次实现AI同时理解和生成视频。该模型采用创新的温度模态对齐技术和金字塔反思机制,在权威测试中超越现有最佳系统,视频生成质量提升2.2%,问答准确率分别提升1.0%和3.3%。这项突破为视频AI应用开辟新前景。