“有两次我曾经被问到这样一个问题,计算先驱查尔斯.巴贝奇(Charles Babbage)在1864年的时候写道:‘祈祷吧,巴贝奇先生,如果你把错误的数字放进机器里,会有正确的答案出来吗?’我没办法正确理解可能引发这个问题的混乱思路。”
因此,“垃圾进,垃圾出”的基本软件原理诞生了。然而,今天,人工智能(AI)已经增加了对巴贝奇难题的赌注,因为来自人工智能的“垃圾输出”导致了令人震惊的偏见。
人工智能——特别是机器学习和深度学习——将大数据集作为输入,从这些数据中提取基本规律,并根据它们提供结论。
例如,如果你想使用人工智能在招聘时给出哪位候选人是最佳选择的建议,你提供为算法提供了过去成功的候选人的相关数据,它将会把这些数据和目前的候选人进行对比,并给出建议。
这里只有一个问题。如果输入的数据带有偏见——比如说,主要由年轻的白人男性组成(也就是我们所说的“垃圾进”),那么人工智能会向你推荐谁呢?你猜对了:大多是年轻的白人男性(这是可以预料得到的结果,也就是“垃圾出”)。
正如巴贝奇可能可以肯定的那样,这里的问题在于输入的数据,而不是人工智能算法本身。但是这更多的是数据带有偏见,而不是坏数据。“数据本身就是数据,”Fourkind的机器学习合作伙伴Max Pagels表示。“这不是社会偏见,这只是一堆数字。需要仔细构建数据集以避免引入社会偏见,但是它本身并没有偏见。”
人工智能算法本身是否带有偏见也是一个悬而未决的问题。“(机器学习算法)尚未针对公平性的任何定义进行优化,”加州大学伯克利分校信息学院副教授Deirdre Mulligan表示。 “他们已经进行的优化都是针对完成任务的。”
好文章,需要你的鼓励
英特尔第三季度财报超华尔街预期,净收入达41亿美元。公司通过裁员等成本削减措施及软银、英伟达和美国政府的大额投资实现复苏。第三季度资产负债表增加200亿美元,营收增长至137亿美元。尽管财务表现强劲,但代工业务的未来发展策略仍不明朗,该业务一直表现不佳且面临政府投资条件限制。
美国认知科学研究院团队首次成功将进化策略扩展到数十亿参数的大语言模型微调,在多项测试中全面超越传统强化学习方法。该技术仅需20%的训练样本就能达到同等效果,且表现更稳定,为AI训练开辟了全新路径。
微软发布新版Copilot人工智能助手,支持最多32人同时参与聊天会话的Groups功能,并新增连接器可访问OneDrive、Outlook、Gmail等多项服务。助手记忆功能得到增强,可保存用户信息供未来使用。界面新增名为Mico的AI角色,并提供"真实对话"模式生成更机智回应。医疗研究功能也得到改进,可基于哈佛健康等可靠来源提供答案。同时推出内置于Edge浏览器的Copilot Actions功能,可自动执行退订邮件、预订餐厅等任务。
纽约大学等机构联合开发的ThermalGen系统能够将普通彩色照片智能转换为对应的热成像图片,解决了热成像数据稀缺昂贵的难题。该系统采用创新的流匹配生成模型和风格解耦机制,能适应从卫星到地面的多种拍摄场景,在各类测试中表现优异。研究团队还贡献了三个大规模新数据集,并计划开源全部技术资源,为搜救、建筑检测、自动驾驶等领域提供强有力的技术支撑。