“有两次我曾经被问到这样一个问题,计算先驱查尔斯.巴贝奇(Charles Babbage)在1864年的时候写道:‘祈祷吧,巴贝奇先生,如果你把错误的数字放进机器里,会有正确的答案出来吗?’我没办法正确理解可能引发这个问题的混乱思路。”
因此,“垃圾进,垃圾出”的基本软件原理诞生了。然而,今天,人工智能(AI)已经增加了对巴贝奇难题的赌注,因为来自人工智能的“垃圾输出”导致了令人震惊的偏见。
人工智能——特别是机器学习和深度学习——将大数据集作为输入,从这些数据中提取基本规律,并根据它们提供结论。
例如,如果你想使用人工智能在招聘时给出哪位候选人是最佳选择的建议,你提供为算法提供了过去成功的候选人的相关数据,它将会把这些数据和目前的候选人进行对比,并给出建议。
这里只有一个问题。如果输入的数据带有偏见——比如说,主要由年轻的白人男性组成(也就是我们所说的“垃圾进”),那么人工智能会向你推荐谁呢?你猜对了:大多是年轻的白人男性(这是可以预料得到的结果,也就是“垃圾出”)。
正如巴贝奇可能可以肯定的那样,这里的问题在于输入的数据,而不是人工智能算法本身。但是这更多的是数据带有偏见,而不是坏数据。“数据本身就是数据,”Fourkind的机器学习合作伙伴Max Pagels表示。“这不是社会偏见,这只是一堆数字。需要仔细构建数据集以避免引入社会偏见,但是它本身并没有偏见。”
人工智能算法本身是否带有偏见也是一个悬而未决的问题。“(机器学习算法)尚未针对公平性的任何定义进行优化,”加州大学伯克利分校信息学院副教授Deirdre Mulligan表示。 “他们已经进行的优化都是针对完成任务的。”
好文章,需要你的鼓励
他认为,AI的发展和影响被普遍低估,它所带来的变革将远超目前人们的认知,AI的进展速度异常迅猛,每次的技术飞跃都比人们预期的
GPU应用已深刻影响各类业务(搜广推、音视频、MMU、风控等)场景,快手内部GPU在线服务及离线训练任务均完成云原生化迁移。
目前华为 Mate X6 折叠屏手机仍然按照华为近年来的宣传管理,官方并没有就具体配置方案进行大张旗鼓的宣发,配置爆料信息也同样较