“有两次我曾经被问到这样一个问题,计算先驱查尔斯.巴贝奇(Charles Babbage)在1864年的时候写道:‘祈祷吧,巴贝奇先生,如果你把错误的数字放进机器里,会有正确的答案出来吗?’我没办法正确理解可能引发这个问题的混乱思路。”
因此,“垃圾进,垃圾出”的基本软件原理诞生了。然而,今天,人工智能(AI)已经增加了对巴贝奇难题的赌注,因为来自人工智能的“垃圾输出”导致了令人震惊的偏见。
人工智能——特别是机器学习和深度学习——将大数据集作为输入,从这些数据中提取基本规律,并根据它们提供结论。
例如,如果你想使用人工智能在招聘时给出哪位候选人是最佳选择的建议,你提供为算法提供了过去成功的候选人的相关数据,它将会把这些数据和目前的候选人进行对比,并给出建议。
这里只有一个问题。如果输入的数据带有偏见——比如说,主要由年轻的白人男性组成(也就是我们所说的“垃圾进”),那么人工智能会向你推荐谁呢?你猜对了:大多是年轻的白人男性(这是可以预料得到的结果,也就是“垃圾出”)。
正如巴贝奇可能可以肯定的那样,这里的问题在于输入的数据,而不是人工智能算法本身。但是这更多的是数据带有偏见,而不是坏数据。“数据本身就是数据,”Fourkind的机器学习合作伙伴Max Pagels表示。“这不是社会偏见,这只是一堆数字。需要仔细构建数据集以避免引入社会偏见,但是它本身并没有偏见。”
人工智能算法本身是否带有偏见也是一个悬而未决的问题。“(机器学习算法)尚未针对公平性的任何定义进行优化,”加州大学伯克利分校信息学院副教授Deirdre Mulligan表示。 “他们已经进行的优化都是针对完成任务的。”
好文章,需要你的鼓励
Queen's大学研究团队提出结构化智能体软件工程框架SASE,重新定义人机协作模式。该框架将程序员角色从代码编写者转变为AI团队指挥者,建立双向咨询机制和标准化文档系统,解决AI编程中的质量控制难题,为软件工程向智能化协作时代转型提供系统性解决方案。
苹果在iOS 26公开发布两周后推出首个修复更新iOS 26.0.1,建议所有用户安装。由于重大版本发布通常伴随漏洞,许多用户此前选择安装iOS 18.7。尽管iOS 26经过数月测试,但更大用户基数能发现更多问题。新版本与iPhone 17等新机型同期发布,测试范围此前受限。预计苹果将继续发布后续修复版本。
西北工业大学与中山大学合作开发了首个超声专用AI视觉语言模型EchoVLM,通过收集15家医院20万病例和147万超声图像,采用专家混合架构,实现了比通用AI模型准确率提升10分以上的突破。该系统能自动生成超声报告、进行诊断分析和回答专业问题,为医生提供智能辅助,推动医疗AI向专业化发展。