谷歌履行了自己在最近Cloud Next大会上做出关于让人工智能服务更易于实施的承诺,宣布推出第一个所谓的“预打包的人工智能服务”,正如其名,这是用于特定业务任务的捆绑预构建AI工具。
谷歌推出预打包的人工智能产品背后的想法是,企业仍然需要帮助才能采用这些新技术。人工智能的潜力已经足够明显,但正如谷歌产品经理Apoorv Saxena和Geordy Kitchen在博客文章中指出的,人工智能还“需要专门的人才和硬件、合适的数据类型和数据量,用于训练和提炼机器学习模型”。
这就是企业眼下需要解决的问题。预打包的服务是以两种方式提供的:通过谷歌合作伙伴提供的打包解决方案,或者通过客户可以用来创建自定义AI工具的参考架构。
“这些都需要比预打包解决方案更多的开发工作,但为需要那些高度业务特定的集成AI部署的企业简化了复杂性,”Google的产品经理说。
有两种预打包的人工智能服务,其中包括“Contact Center AI”,该服务自上个月推出Alpha测试版以来已经有800多个用户。企业通过使用Contact Center AI,基本上可以实现一个为他们接听电话的智能聊天机器人,还可以询问和回答简单的问题,以确定呼叫者是否需要和人工代理沟通。谷歌表示,这个人工智能服务还可以记录趋势并分析出现问题的频率。
第二个打包服务是“Cloud Talent Solution”人工智能捆绑包,旨在招募新人才,同时缩短招募人才所需的时间。
谷歌还通过一个参考架构提供了“Recommendation Solution”人工智能工具,可以帮助企业向客户推荐类似或互补的产品,让企业可以将服务直接编码到他们现有的网站中,然后利用谷歌的机器学习功能,根据用户的购买历史、搜索等建议来改善他们的产品营销。
谷歌选择提供打包服务和参考架构的策略,是一种“经过验证的方法”,比人工智能本身更早,并且已经在早期技术(如预测分析)方面取得了成功,Constellation Research副总裁兼首席分析师Holger Mueller这样表示。
Mueller表示,“谷歌正在加强联络中心和人才获取领域,后者是谷歌最早的人工智能产品之一,另一方面,推荐功能具有更广泛的适用性,因此从参考架构开始是有道理的。CXO希望看到AI厂商提供验证平台和参考架构,因此谷歌现在是走在了正确的轨道上。”
好文章,需要你的鼓励
随着AI广泛应用推动数据中心建设热潮,运营商面临可持续发展挑战。2024年底美国已建成或批准1240个数据中心,能耗激增引发争议。除能源问题外,服务器和GPU更新换代产生的电子废物同样严重。通过采用模块化可修复系统、AI驱动资产跟踪、标准化数据清理技术以及与认证ITAD合作伙伴合作,数据中心可实现循环经济模式,在确保数据安全的同时减少环境影响。
剑桥大学研究团队首次系统探索AI在多轮对话中的信心判断问题。研究发现当前AI系统在评估自己答案可靠性方面存在严重缺陷,容易被对话长度而非信息质量误导。团队提出P(SUFFICIENT)等新方法,但整体问题仍待解决。该研究为AI在医疗、法律等关键领域的安全应用提供重要指导,强调了开发更可信AI系统的紧迫性。
超大规模云数据中心是数字经济的支柱,2026年将继续保持核心地位。AWS、微软、谷歌、Meta、甲骨文和阿里巴巴等主要运营商正积极扩张以满足AI和云服务需求激增,预计2026年资本支出将超过6000亿美元。然而增长受到电力供应、设备交付和当地阻力制约。截至2025年末,全球运营中的超大规模数据中心达1297个,总容量预计在12个季度内翻倍。
威斯康星大学研究团队开发出Prithvi-CAFE洪水监测系统,通过"双视觉协作"机制解决了AI地理基础模型在洪水识别上的局限性。该系统巧妙融合全局理解和局部细节能力,在国际标准数据集上创造最佳成绩,参数效率提升93%,为全球洪水预警和防灾减灾提供了更准确可靠的技术方案。