在数据中心内保持服务器的冷却是需要大量电力的,特别是像谷歌等技术巨头运营的大型设施。现在谷歌正试图利用人工智能来削减电费。
谷歌透露,它已经打造了一个专门的AI来自动管理数据中心的复杂冷却设备。据称,该系统自动微调冷却的能力已经让电源效率有了显著提高。
该项目是以谷歌DeepMind AI部门在2016年首次发布的工作成果为基础的。该团队开发了一个系统,可以收集有关冷却设备的运行数据,为工程师提供关于如何优化电力使用的建议。谷歌新推出的AI可以完全接管任务,但出于安全考虑,它是在人工监督下运作的。
系统每五分钟会对数据中心内的冷却设备进行快照,并且会综合数千种不同指标,从设施温度到例如热泵运行速度等更多细节。谷歌的AI根据这些信息来决定采取哪些措施来优化电力消耗。
谷歌写道:“人工智能计算出的最佳行动是经过了由数据中心运营商定义的内部安全约束列表进行审查的。一旦指令从云发送到物理数据中心,本地控制系统就会根据约束条件验证指令,这种冗余检查可确保系统是保持在局部约束范围内运行的,操作员可以完全控制操作边界。”
根据谷歌的说法,总共有八种不同的机制可以确保AI按预期工作。如果出现问题,系统将简单地回退到用于管理冷却系统的预定义自动化规则。
谷歌表示,部署人工智能之后可以让数据中心平均节能30%,这个数字低于2016年开发的推荐系统节能40%,但谷歌解释说,该软件是故意有限制的,以便平衡电源效率和可靠性。此外,谷歌认为随着时间的推移,人工智能收集到的数据越来越多,实现的节能效果也会不断提高。
“很高兴我们的直接人工智能控制系统安全可靠地运行,同时始终如一地实现节能。但是,数据中心只是个开始。从长远来看,我们认为这项技术将有可能应用于其他工业环境中,有助于在更大范围内应对气候变化。”
好文章,需要你的鼓励
这项由浙江大学与阿里巴巴通义实验室联合开展的研究,通过创新的半在线强化学习方法,显著提升了AI界面助手在多步骤任务中的表现。UI-S1-7B模型在多个基准测试中创造了7B参数规模的新纪录,为GUI自动化代理的发展开辟了新的技术路径。
阿里巴巴联合浙江大学开发的OmniThink框架让AI学会像人类一样慢思考写作。通过信息树和概念池的双重架构,系统能够动态检索信息、持续反思,突破了传统AI写作内容浅薄重复的局限。实验显示该方法在文章质量各维度均显著超越现有最强基线,知识密度提升明显,为长文本生成研究开辟了新方向。
新加坡国立大学研究人员开发出名为AiSee的可穿戴辅助设备,利用Meta的Llama模型帮助视障人士"看见"周围世界。该设备采用耳机形态,配备摄像头作为AI伴侣处理视觉信息。通过集成大语言模型,设备从简单物体识别升级为对话助手,用户可进行追问。设备运行代理AI框架,使用量化技术将Llama模型压缩至10-30亿参数在安卓设备上高效运行,支持离线处理敏感文档,保护用户隐私。
腾讯混元3D 2.0是一个革命性的3D生成系统,能够从单张图片生成高质量的带纹理3D模型。该系统包含形状生成模块Hunyuan3D-DiT和纹理合成模块Hunyuan3D-Paint,采用创新的重要性采样和多视角一致性技术,在多项评估指标上超越现有技术,并提供用户友好的制作平台。作为开源项目,它将大大降低3D内容创作门槛,推动3D技术的普及应用。