至顶网软件频道消息: 今天AWS推出了一款专为机器学习设计的新处理器芯片,这也是Amazon在云计算领域雄心勃勃的另一个标志。
这款名为Inferentia的芯片将通过AWS EC2计算服务、SageMaker AI服务和(今天公布的新服务)Amazon Elastic Inference提供,旨在加速由机器学习模型执行的推理或预测过程,为Amazon Alexa和自动驾驶汽车等服务提供动力。
Inferentia芯片是由Amazon几年前成立的芯片设计公司Annapurna Labs设计,据称它与GPU(主要来自于Nvidia公司,一直是机器学习的首选芯片)相比具有低延迟和低成本等优点。
预计Inferentia芯片将于明年上市。AWS首席执行官Andy Jassy在今天上午的re:Invent大会主题演讲中简要介绍了Inferentia芯片,但他给出的设计或者规格细节很少,只是说Inferentia芯片支持多种数据类型和所有主流框架,如PyTorch和TensorFlow和MXNet。此外它还将提供数百的TOPS性能,聚合起来可以实现上千的TOPS性能。
Inferentia芯片是本周以来AWS宣布推出第二款芯片。周一晚上,AWS宣布推出名为Graviton的处理器,该处理器可通过AWS EC2云计算服务提供给云客户。Graviton是基于智能手机、网络路由器和各种其他设备中使用的Arm架构,并将逐渐用于计算机服务器中,例如AWS设计用于海量数据中心的计算机服务器。
Moor Insights&Strategy总裁兼首席分析师Patrick Moorhead表示:“AWS宣布将自开自己的支持多种框架的机器学习推理芯片是一个重大的消息。与Google Cloud不同,这项AWS服务将广泛应用并具有弹性。目前AWS针对推理提供CPU、GPU、FPGA、以及现在自己的ASIC。”
在过去几年中我们看到,市场中出现了大量新芯片用于特定应用的优化,特别是机器学习和人工智能。例如,Google提供对自定义Tensor处理单元芯片的云访问。芯片设计兴起的一个原因是,所谓的超大规模数据中心企业需要对他们的硬件进行尽可能多的效率优化。
所有这些都让数据中心领导者英特尔处于了守势。英特尔收购了Altera和Movidius等多家公司,为其核心X86产品线增加了新的芯片设计和专业技术。此外英特尔还调整了X86芯片(如目前的至强产品线),以更好地应对机器学习和其他任务。
Amazon还发布了Elastic Inference,这是一项由GPU提供支持的深度学习推理加速服务。Jassy表示,这项服务仅根据需要提供尽可能多的AWS计算实例,可以节省高达75%的推理成本。
此外,AWS推出了一系列与人工智能相关的服务和产品,包括自主模型汽车Deep Racer,开发者可用来研究强化学习,预订价为249美元。
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。