微软利用本周举行的微软Connect() 2018开发者大会宣布强化在Azure公有云基础设施平台上提供的人工智能产品。
在今天一系列AI相关的公告中,最引人关注的就是Azure Machine Learning Service的面市,这款基于云的产品让数据科学家和开发者可以用来快速创建和训练机器学习模型,然后将其部署到生产中。
微软表示,开发者借助Azure Machine Learning Service可以消除构建和培训机器学习模型所涉及的大部分繁重工作,主要功能包括能够自动选择和调整机器学习模型,最大的优点是减少了将这些模型投入运行和生产所需的时间。
微软最早在今年9月首次预览了Azure Machine Learning Service,并称将从明年2月1日开始全面提供。
此外,微软还更新了Microsoft Azure Cosmos DB数据库服务,该服务为那些需要AI应用在全球范围内可靠运行的企业组织提供跨了Azure不同区域的分发。微软表示,新的Azure Cosmos DB Shared Throughput Offer已于今天面市,它可为运行多个容器数据库的企业提供“更低的门槛”和“更好的定价选择”。
最后,微软还更新了一些Azure Cognitive Services服务,让开发者可以更轻松地将更多AI功能构建到他们的应用中。Azure Cognitive Services是一系列应用编程接口的集合,让应用可以通过自然的通信方式“看、听、说、理解和解释”人们的需求。微软说,部署Azure Cognitive Services的最佳方式是通过应用容器,应用容器将应用与基础设施隔离开来,只编写一次应用就可以运行在任何平台上。
微软表示:“通过在容器中部署Azure Cognitive Services,客户可以分析靠近数据所在物理世界的信息,提供实时洞察以及具有高响应度和上下文感知的沉浸式体验。”
为此,微软将增加对还在预览中的Language Understanding API的容器支持,让开发者可以在网络边缘运行“语言理解解决方案”。第二个更新是向Translator Text API引入了自定义翻译功能,微软称从今天开始,这让开发者可以使用人工翻译的内容来构建一个自定义翻译系统,更好地处理特定书写风格、行业表达和词汇。
好文章,需要你的鼓励
杜克大学研究团队建立了首个专门针对Web智能体攻击检测的综合评估标准WAInjectBench。研究发现,现有攻击手段极其多样化,从图片像素篡改到隐藏弹窗无所不包。虽然检测方法对明显恶意指令有中等效果,但对隐蔽攻击几乎无能为力。研究构建了包含近千个恶意样本的测试数据库,评估了十二种检测方法,揭示了文本和图像检测的互补性。这项研究为Web智能体安全防护指明了方向,提醒我们在享受AI便利时必须保持安全意识。
生成式AI的兴起让谷歌和Meta两大科技巨头受益匪浅。谷歌母公司Alphabet第三季度广告收入同比增长12%达742亿美元,云服务收入增长33%至151.5亿美元,季度总收入首次突破千亿美元大关。Meta第三季度收入512.5亿美元,同比增长26%。两家公司都将大幅增加AI基础设施投资,Meta预计2025年资本支出提升至700亿美元,Alphabet预计达910-930亿美元。
加州大学圣地亚哥分校研究团队系统研究了AI智能体多回合强化学习训练方法,通过环境、策略、奖励三大支柱的协同设计,提出了完整的训练方案。研究在文本游戏、虚拟家庭和软件工程等多个场景验证了方法有效性,发现简单环境训练能迁移到复杂任务,监督学习初始化能显著减少样本需求,密集奖励能改善学习效果。这为训练能处理复杂多步骤任务的AI智能体提供了实用指南。