微软利用本周举行的微软Connect() 2018开发者大会宣布强化在Azure公有云基础设施平台上提供的人工智能产品。
在今天一系列AI相关的公告中,最引人关注的就是Azure Machine Learning Service的面市,这款基于云的产品让数据科学家和开发者可以用来快速创建和训练机器学习模型,然后将其部署到生产中。
微软表示,开发者借助Azure Machine Learning Service可以消除构建和培训机器学习模型所涉及的大部分繁重工作,主要功能包括能够自动选择和调整机器学习模型,最大的优点是减少了将这些模型投入运行和生产所需的时间。
微软最早在今年9月首次预览了Azure Machine Learning Service,并称将从明年2月1日开始全面提供。
此外,微软还更新了Microsoft Azure Cosmos DB数据库服务,该服务为那些需要AI应用在全球范围内可靠运行的企业组织提供跨了Azure不同区域的分发。微软表示,新的Azure Cosmos DB Shared Throughput Offer已于今天面市,它可为运行多个容器数据库的企业提供“更低的门槛”和“更好的定价选择”。
最后,微软还更新了一些Azure Cognitive Services服务,让开发者可以更轻松地将更多AI功能构建到他们的应用中。Azure Cognitive Services是一系列应用编程接口的集合,让应用可以通过自然的通信方式“看、听、说、理解和解释”人们的需求。微软说,部署Azure Cognitive Services的最佳方式是通过应用容器,应用容器将应用与基础设施隔离开来,只编写一次应用就可以运行在任何平台上。
微软表示:“通过在容器中部署Azure Cognitive Services,客户可以分析靠近数据所在物理世界的信息,提供实时洞察以及具有高响应度和上下文感知的沉浸式体验。”
为此,微软将增加对还在预览中的Language Understanding API的容器支持,让开发者可以在网络边缘运行“语言理解解决方案”。第二个更新是向Translator Text API引入了自定义翻译功能,微软称从今天开始,这让开发者可以使用人工翻译的内容来构建一个自定义翻译系统,更好地处理特定书写风格、行业表达和词汇。
好文章,需要你的鼓励
亚马逊云服务部门与OpenAI签署了一项价值380亿美元的七年协议,为ChatGPT制造商提供数十万块英伟达图形处理单元。这标志着OpenAI从研究实验室向AI行业巨头的转型,该公司已承诺投入1.4万亿美元用于基础设施建设。对于在AI时代竞争中处于劣势的亚马逊而言,这项协议证明了其构建和运营大规模数据中心网络的能力。
Meta FAIR团队发布的CWM是首个将"世界模型"概念引入代码生成的32亿参数开源模型。与传统只学习静态代码的AI不同,CWM通过学习Python执行轨迹和Docker环境交互,真正理解代码运行过程。在SWE-bench等重要测试中表现卓越,为AI编程助手的发展开辟了新方向。
当今最大的AI数据中心耗电量相当于一座小城市。美国数据中心已占全国总电力消费的4%,预计到2028年将升至12%。电力供应已成为数据中心发展的主要制约因素。核能以其清洁、全天候供电特性成为数据中心运营商的新选择。核能项目供应链复杂,需要创新的采购模式、标准化设计、早期参与和数字化工具来确保按时交付。
卡内基梅隆大学研究团队发现AI训练中的"繁荣-崩溃"现象,揭示陈旧数据蕴含丰富信息但被传统方法错误屏蔽。他们提出M2PO方法,通过改进数据筛选策略,使模型即使用256步前的陈旧数据也能达到最新数据的训练效果,准确率最高提升11.2%,为大规模异步AI训练开辟新途径。