至顶网软件频道消息:Deep Knowledge Ventures的合伙人Margaretta Colangelo在她最近的一篇文章(https://www.linkedin.com/pulse/ai-forefront-biochemistry-biopharma-must-innovate-die-colangelo/)里提到,尽管制药公司公司每年在研发上的花费超过1720亿美元,但90%以上的使用传统技术发现的分子都在人体临床试验中失败。而且,新批准的药物75%都无法承担开发成本,一些分析师预测药品研发的投资回报率(ROI)到2020年时可能为零。如果我们觉得这种预测有很大机会成为现实,那么我们就应该将人工智能(AI)视为制药研发领域活命的天外救星,人工智能同时也为某些患者提供了宝贵的选择希望。
制药和科技公司的药物发现和药物开发之间的顶级人工智能互连(图:DKA)
在这场生死之赛里,一些公司试图在未知领域测试极限。 Deep Knowledge Analytics(DKA)是专注于DeepTech的投资基金公司Deep Knowledge Ventures的子公司。DKA从全球1000家AI Healthcare(人工智能医疗保健)公司里将专门从事核心科学研发的公司分了出来。根据DKA的说法,人工智能医疗保健行业的入场门槛比人工智能药物发现方面低,这些人工智能医疗保健公司可以利用更少的资金和更少的高度专业化的员工实现真正的成果。药物发现公司的AI则需要更高水平的传统生物制药科学(生物化学、生物学、生物医学等)和核心AI技术。将新的AI鉴定药物推向市场需要“完整堆栈”, 公司要实现完整堆栈需要非常强大、非常专业的团队以及需具有足够多的具个人专业知识的专家坐镇。
而即使是投资者也很难进入这个行业,因为所需的最低专业知识门槛相对较高。投资基金公司很少能真正了解该行业的内容、原因和方式以及在该行业做出合理投资决策所需的各项参数。 260家投资基金公司里可能只有不到20家基金资助了125家活跃的人工智能药物发现公司。
药物发现AI专家100强(图:DKA)
也许在未来几年里,会有一些公司将在制药行业发挥强大的影响力,进而在药物开发方面取得前所未有的突破。从药膏到人工智能花了不到200年,期间的发展从根本上改变了医疗保健和患者的生活质量。然而,在最近几十年里,大家普遍认为我们已经陷入了停滞不前的境地,每个新的一步都需要付出巨大努力。我们希望AI在药物开发方面能将医疗保健推向新的高度。尽管如此,有些星星将黯然消失,新星将会出现,这是物理定律使然。我们知道这一点后在看到新星诞生时也就释然了。
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
微软亚洲研究院开发出革命性的认知启发学习框架,让AI能够像人类一样思考和学习。该技术通过模仿人类的注意力分配、记忆整合和类比推理等认知机制,使AI在面对新情况时能快速适应,无需大量数据重新训练。实验显示这种AI在图像识别、语言理解和决策制定方面表现卓越,为教育、医疗、商业等领域的智能化应用开辟了新前景。