至顶网软件频道消息:Deep Knowledge Ventures的合伙人Margaretta Colangelo在她最近的一篇文章(https://www.linkedin.com/pulse/ai-forefront-biochemistry-biopharma-must-innovate-die-colangelo/)里提到,尽管制药公司公司每年在研发上的花费超过1720亿美元,但90%以上的使用传统技术发现的分子都在人体临床试验中失败。而且,新批准的药物75%都无法承担开发成本,一些分析师预测药品研发的投资回报率(ROI)到2020年时可能为零。如果我们觉得这种预测有很大机会成为现实,那么我们就应该将人工智能(AI)视为制药研发领域活命的天外救星,人工智能同时也为某些患者提供了宝贵的选择希望。
制药和科技公司的药物发现和药物开发之间的顶级人工智能互连(图:DKA)
在这场生死之赛里,一些公司试图在未知领域测试极限。 Deep Knowledge Analytics(DKA)是专注于DeepTech的投资基金公司Deep Knowledge Ventures的子公司。DKA从全球1000家AI Healthcare(人工智能医疗保健)公司里将专门从事核心科学研发的公司分了出来。根据DKA的说法,人工智能医疗保健行业的入场门槛比人工智能药物发现方面低,这些人工智能医疗保健公司可以利用更少的资金和更少的高度专业化的员工实现真正的成果。药物发现公司的AI则需要更高水平的传统生物制药科学(生物化学、生物学、生物医学等)和核心AI技术。将新的AI鉴定药物推向市场需要“完整堆栈”, 公司要实现完整堆栈需要非常强大、非常专业的团队以及需具有足够多的具个人专业知识的专家坐镇。
而即使是投资者也很难进入这个行业,因为所需的最低专业知识门槛相对较高。投资基金公司很少能真正了解该行业的内容、原因和方式以及在该行业做出合理投资决策所需的各项参数。 260家投资基金公司里可能只有不到20家基金资助了125家活跃的人工智能药物发现公司。
药物发现AI专家100强(图:DKA)
也许在未来几年里,会有一些公司将在制药行业发挥强大的影响力,进而在药物开发方面取得前所未有的突破。从药膏到人工智能花了不到200年,期间的发展从根本上改变了医疗保健和患者的生活质量。然而,在最近几十年里,大家普遍认为我们已经陷入了停滞不前的境地,每个新的一步都需要付出巨大努力。我们希望AI在药物开发方面能将医疗保健推向新的高度。尽管如此,有些星星将黯然消失,新星将会出现,这是物理定律使然。我们知道这一点后在看到新星诞生时也就释然了。
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。