Salesforce正在向自己的Commerce Cloud中注入更多的人工智能特性。
Salesforce今天推出了两个面向其电子商务自动化平台新的AI服务,旨在帮助零售商更有效定位在线购物者。这两个服务都采用了Einstein(Salesforce核心服务的机器学习层),并公开了应用编程接口以便让企业将其嵌入到自己的服务中。
这次推出的第一项服务名为Einstein Recommendations API,它采用人工智能生成量身定制的购物推荐,让零售商能够将网站上显示同类型的个性化产品建议推送到数字渠道中。该服务还可以通过移动应用、店内系统和语音助理(如Amazon的Alexa)提供产品。
另一项服务名为Einstein Visual Search,让购物者能够通过他们关注的特定商品的照片,更快地搜索零售商的在线目录。该服务采用的机器学习算法可以分析图像以识别匹配的产品,如果没有完全匹配则找出最相似的产品。
除了这两项服务之外,Salesforce还将推出第三款产品,名为Commerce API Explorer,它与Einstein Visual Search的角色类似,但是面向开发者的。Commerce API Explorer,是一个门户网站,旨在让应用团队更容易浏览和对比各种API选项。
另外Salesforce还更新了High-scale Inventory Availability Service,让零售商们可以向在线买家展示拥有所需库存产品的最近门店,并通过外部服务(如乘车应用)显示产品供货信息。
Commerce Cloud是Salesforce业务中规模相对较小但增长迅速的一项业务。Salesforce在最近一次财报电话会议上称,Commerce Cloud和Marketing Cloud的总收入同比增长了37%,达到4.89亿美元。随着传统零售商增加技术投资以应对亚马逊的快速扩张,这一增长势头将继续下去。
好文章,需要你的鼓励
洛杉矶大火一年后,亚马逊Ring安全服务推出Fire Watch功能以降低野火风险。该功能集成在Ring应用的邻里版块中,计划今春全美推广。系统依托非营利组织Watch Duty的野火预警,当检测到野火时会通知附近用户,符合条件的户外摄像头将启用AI图像识别监测火情。Ring还推出AI异常事件预警和主动警告功能。但隐私问题仍存争议,多个州因隐私法限制相关AI功能使用。
剑桥大学研究团队首次系统探索AI在多轮对话中的信心判断问题。研究发现当前AI系统在评估自己答案可靠性方面存在严重缺陷,容易被对话长度而非信息质量误导。团队提出P(SUFFICIENT)等新方法,但整体问题仍待解决。该研究为AI在医疗、法律等关键领域的安全应用提供重要指导,强调了开发更可信AI系统的紧迫性。
数据平台Snowflake将谷歌Gemini模型集成到其Cortex AI中,让客户在数据环境边界内访问基础模型。Cortex AI支持跨云推理,无论客户环境运行在AWS、Azure还是谷歌云上。该平台已支持OpenAI、Anthropic等多家模型提供商,采用按需付费模式。客户可通过SQL或API直接访问模型,分析多模态数据并构建AI应用场景。
威斯康星大学研究团队开发出Prithvi-CAFE洪水监测系统,通过"双视觉协作"机制解决了AI地理基础模型在洪水识别上的局限性。该系统巧妙融合全局理解和局部细节能力,在国际标准数据集上创造最佳成绩,参数效率提升93%,为全球洪水预警和防灾减灾提供了更准确可靠的技术方案。