谷歌今天宣布,将在其云平台上采用Nvidia的低功耗Tesla T4 GPU,目前还处于测试模式。
此举很重要,因为Nvidia GPU是用于机器学习最主流的硬件。机器学习是人工智能的一个子集,利用软件大致模拟人类大脑的工作方式,让计算机能够自学,而不需要明确编程。
在采用这些芯片之前,特定客户已经对这些芯片进行了数月的测试。
Nvidia的T4 GPU专为人工智能、数据分析、高性能计算和图形设计等工作负载设计,基于Nvidia新的Turing架构,拥有多精度Turing Tensor Cores和新的RT核心。每个T4芯片都配备16GB内存,能够提供206 TOPS计算性能。
Nvidia表示,由于能耗低,所以T4 GPU对于那些运行在网络边缘的工作负载来说是一个理想选择。
谷歌在今天的博客文章中强调说,T4也非常适合运行推理工作负载——也就是经过全面训练的机器学习算法,可自行做出决策。
“它用于FP16、INT8和INT4所实现的高性能,让你可以运行大规模推理工作负载,同事实现精度与性能之间的平衡,这在其他GPU上是无法实现的,”谷歌产品经理Chris Kleban这样表示。
Constellation Research首席分析师、副总裁Holger Mueller称,Nvidia T4 GPU得到谷歌云的支持,这将让Nvidia和谷歌都受益,因为机器学习是云普及的关键驱动因素。
Mueller说:“Nvidia将其Tesla GPU纳入Google Cloud是一项重大的胜利,因为这确保了客户可以轻松使用Tesla GPU。这对谷歌来说也是一件好事,因为机器学习工作加载很多GPU平台,这样让客户可以更轻松地将负载转移到Google Cloud。”
谷歌表示,将从今天开始在多个地区测试支持Nvidia Tesla T4 GPU,包括美国、欧洲、巴西、印度、日本和新加坡。在可抢占的虚拟机实例上,每个GPU每小时起价为29美分;对于按需实例来说,起价为每小时95美分。
好文章,需要你的鼓励
在期末之际,OpenAI和谷歌向学生免费提供AI工具:前者短期内开放ChatGPT Plus,后者长期提供Google One AI Premium套件,助力高校数字化转型。
Together AI 最新升级其微调平台,支持浏览器零代码操作、直接偏好优化、续接先前训练任务并调整消息权重,同时新定价更低廉,旨在简化AI模型持续迭代。
本文介绍如何利用人工智能工具 ( 如 ChatGPT ) 来提升工作和家庭的任务效率,通过优化家务分配和数字化会议记录,实现微小节时也能带来显著改变。