谷歌今天宣布,将在其云平台上采用Nvidia的低功耗Tesla T4 GPU,目前还处于测试模式。
此举很重要,因为Nvidia GPU是用于机器学习最主流的硬件。机器学习是人工智能的一个子集,利用软件大致模拟人类大脑的工作方式,让计算机能够自学,而不需要明确编程。
在采用这些芯片之前,特定客户已经对这些芯片进行了数月的测试。
Nvidia的T4 GPU专为人工智能、数据分析、高性能计算和图形设计等工作负载设计,基于Nvidia新的Turing架构,拥有多精度Turing Tensor Cores和新的RT核心。每个T4芯片都配备16GB内存,能够提供206 TOPS计算性能。
Nvidia表示,由于能耗低,所以T4 GPU对于那些运行在网络边缘的工作负载来说是一个理想选择。
谷歌在今天的博客文章中强调说,T4也非常适合运行推理工作负载——也就是经过全面训练的机器学习算法,可自行做出决策。
“它用于FP16、INT8和INT4所实现的高性能,让你可以运行大规模推理工作负载,同事实现精度与性能之间的平衡,这在其他GPU上是无法实现的,”谷歌产品经理Chris Kleban这样表示。
Constellation Research首席分析师、副总裁Holger Mueller称,Nvidia T4 GPU得到谷歌云的支持,这将让Nvidia和谷歌都受益,因为机器学习是云普及的关键驱动因素。
Mueller说:“Nvidia将其Tesla GPU纳入Google Cloud是一项重大的胜利,因为这确保了客户可以轻松使用Tesla GPU。这对谷歌来说也是一件好事,因为机器学习工作加载很多GPU平台,这样让客户可以更轻松地将负载转移到Google Cloud。”
谷歌表示,将从今天开始在多个地区测试支持Nvidia Tesla T4 GPU,包括美国、欧洲、巴西、印度、日本和新加坡。在可抢占的虚拟机实例上,每个GPU每小时起价为29美分;对于按需实例来说,起价为每小时95美分。
好文章,需要你的鼓励
香港大学和加州大学伯克利分校的一项新研究显示,在没有人工标注数据的情况下,语言模型和视觉语言模型能够更好地泛化。这一发现挑战了大型语言模型社区的主流观点,即模型需要手工标注的训练样本。研究表明,过度依赖人工示例反而可能对模型的泛化能力产生负面影响。
OpenAI 发布了一款名为 Operator 的网络自动化工具,该工具使用名为计算机使用代理 (CUA) 的新 AI 模型来控制网络浏览器。Operator 通过视觉界面观察和交互屏幕元素,模仿人类操作方式执行任务。这项技术目前仍处于研究预览阶段,OpenAI 希望通过用户反馈来改进系统功能。
大型语言模型如 ChatGPT 展现了对话能力,但它们并不真正理解所使用的词汇。研究者们在冲绳科学技术大学构建了一个受大脑启发的人工智能模型,虽然其学习能力有限,但似乎掌握了词汇背后的概念。通过模仿婴儿学习语言的方式,研究团队将人工智能训练在一个能够与世界互动的机器人中,探索如何让人工智能实现类似人类的语言理解。