TensorFlow是由谷歌人工智能团队“谷歌大脑”开发和维护的一个基于数据流编程的符号数学系统,拥有多层级结构,是一个人工智能框架。TensorFlow 可部署于各类服务器、PC终端和网页并支持GPU和TPU高性能数值计算,被广泛应用于各类机器学习算法的编程实现,其前身是谷歌的神经网络算法库DistBelief。自2015年11月9日起,TensorFlow依据阿帕奇授权协议(Apache 2.0 open source license)开放源代码。
3年多后,谷歌发布了TensorFlow 的第二代版本,不仅提升了可用性,增加了Eager Execution的支持,让TensorFlow 2.0可以更快地启动AI模型,同时还新增了两大互补模块保护用户数据隐私。
3月初,谷歌推出了其人工智能框架TensorFlow的2.0版本,以及两个能够让算法更负责任地处理用户数据的互补模块。
首先,TensorFlow 2.0重点提高了可使用性。为此,其中还接入了基于Keras的简化应用编程接口。Keras是一种开源工具,能够使人工智能开发框架更易于使用,它允许工程师在一个位置访问以前分布在多个API中的功能,并提供更多自定义开发工作流程的选项。
此外,TensorFlow 2.0的另一个关键升级是增加了Eager Execution的支持。这让TensorFlow 2.0可以更快地启动AI模型,通过更短的测试运行延迟,让工程师们可以尝试不同的模型变量。考虑到机器学习开发的高度迭代性,这将节省大量的时间成本。
值得一提的是,尽管TensorFlow 2.0在功能上有了显着的提升,但这次发布最引人关注的却是另外两个互补模块,这两个模块旨在帮助开发人员直接在AI软件中构建隐私控制,从而更好地保护用户信息。
其中,第一个模块是TensorFlow Privacy。通过自动过滤与算法通常接收的信息不同的输入,机器学习模型就能够自动筛除潜在敏感数据。例如,基于AI的拼写检查工具往往将字母作为输入,这意味着它可以轻松识别和过滤诸如信用卡号之类的长数字序列。
“TensorFlow Privacy并不要求使用者必须具备隐私或基础数学方面的专业知识,那些使用标准TensorFlow的开发者也不需要改变他们的模型架构、培训程序或流程就可以正常使用。”谷歌工程师Carey Radebaugh和Ulfar Erlingsson在博客中这样说。
另一个新的隐私模块名为TensorFlow Federated,它主要针对越来越多依赖于AI支持核心功能的移动服务。
由于移动设备的处理能力有限,应用通常会将用户数据发送到云的后端进行分析,然后通过机器学习对数据进行处理。而TensorFlow Federated让应用可以直接在用户手机上执行分析。然后,开发人员可以收集所得到的分析结果,并利用这些结果改进AI算法,而无需再访问基础数据。这将大大保护消费者的隐私。
“通过TFF [TensorFlow Federated],我们可以展示我们所选择的机器学习模型架构,然后对所有数据进行训练,并保持每个编写器的数据的独立和本地化。”谷歌参与这个项目开发的两位工程师Alex Ingerman和Krzys Ostrowski在博客文章中这样写道。
据了解,与TensorFlow本身相似,这两个新模块将以开源许可的形式提供给用户。
好文章,需要你的鼓励
香港大学和加州大学伯克利分校的一项新研究显示,在没有人工标注数据的情况下,语言模型和视觉语言模型能够更好地泛化。这一发现挑战了大型语言模型社区的主流观点,即模型需要手工标注的训练样本。研究表明,过度依赖人工示例反而可能对模型的泛化能力产生负面影响。
OpenAI 发布了一款名为 Operator 的网络自动化工具,该工具使用名为计算机使用代理 (CUA) 的新 AI 模型来控制网络浏览器。Operator 通过视觉界面观察和交互屏幕元素,模仿人类操作方式执行任务。这项技术目前仍处于研究预览阶段,OpenAI 希望通过用户反馈来改进系统功能。
大型语言模型如 ChatGPT 展现了对话能力,但它们并不真正理解所使用的词汇。研究者们在冲绳科学技术大学构建了一个受大脑启发的人工智能模型,虽然其学习能力有限,但似乎掌握了词汇背后的概念。通过模仿婴儿学习语言的方式,研究团队将人工智能训练在一个能够与世界互动的机器人中,探索如何让人工智能实现类似人类的语言理解。