TensorFlow是由谷歌人工智能团队“谷歌大脑”开发和维护的一个基于数据流编程的符号数学系统,拥有多层级结构,是一个人工智能框架。TensorFlow 可部署于各类服务器、PC终端和网页并支持GPU和TPU高性能数值计算,被广泛应用于各类机器学习算法的编程实现,其前身是谷歌的神经网络算法库DistBelief。自2015年11月9日起,TensorFlow依据阿帕奇授权协议(Apache 2.0 open source license)开放源代码。
3年多后,谷歌发布了TensorFlow 的第二代版本,不仅提升了可用性,增加了Eager Execution的支持,让TensorFlow 2.0可以更快地启动AI模型,同时还新增了两大互补模块保护用户数据隐私。
3月初,谷歌推出了其人工智能框架TensorFlow的2.0版本,以及两个能够让算法更负责任地处理用户数据的互补模块。
首先,TensorFlow 2.0重点提高了可使用性。为此,其中还接入了基于Keras的简化应用编程接口。Keras是一种开源工具,能够使人工智能开发框架更易于使用,它允许工程师在一个位置访问以前分布在多个API中的功能,并提供更多自定义开发工作流程的选项。
此外,TensorFlow 2.0的另一个关键升级是增加了Eager Execution的支持。这让TensorFlow 2.0可以更快地启动AI模型,通过更短的测试运行延迟,让工程师们可以尝试不同的模型变量。考虑到机器学习开发的高度迭代性,这将节省大量的时间成本。
值得一提的是,尽管TensorFlow 2.0在功能上有了显着的提升,但这次发布最引人关注的却是另外两个互补模块,这两个模块旨在帮助开发人员直接在AI软件中构建隐私控制,从而更好地保护用户信息。
其中,第一个模块是TensorFlow Privacy。通过自动过滤与算法通常接收的信息不同的输入,机器学习模型就能够自动筛除潜在敏感数据。例如,基于AI的拼写检查工具往往将字母作为输入,这意味着它可以轻松识别和过滤诸如信用卡号之类的长数字序列。
“TensorFlow Privacy并不要求使用者必须具备隐私或基础数学方面的专业知识,那些使用标准TensorFlow的开发者也不需要改变他们的模型架构、培训程序或流程就可以正常使用。”谷歌工程师Carey Radebaugh和Ulfar Erlingsson在博客中这样说。
另一个新的隐私模块名为TensorFlow Federated,它主要针对越来越多依赖于AI支持核心功能的移动服务。
由于移动设备的处理能力有限,应用通常会将用户数据发送到云的后端进行分析,然后通过机器学习对数据进行处理。而TensorFlow Federated让应用可以直接在用户手机上执行分析。然后,开发人员可以收集所得到的分析结果,并利用这些结果改进AI算法,而无需再访问基础数据。这将大大保护消费者的隐私。
“通过TFF [TensorFlow Federated],我们可以展示我们所选择的机器学习模型架构,然后对所有数据进行训练,并保持每个编写器的数据的独立和本地化。”谷歌参与这个项目开发的两位工程师Alex Ingerman和Krzys Ostrowski在博客文章中这样写道。
据了解,与TensorFlow本身相似,这两个新模块将以开源许可的形式提供给用户。
好文章,需要你的鼓励
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
AI代码编辑器开发商Cursor完成23亿美元D轮融资,估值达293亿美元。Accel和Coatue领投,Google、Nvidia等参与。公司年化收入已突破10亿美元。Cursor基于微软开源VS Code打造,集成大语言模型帮助开发者编写代码和修复漏洞。其自研Composer模型采用专家混合算法,运行速度比同等质量模型快四倍。公司拥有数百万开发者用户,将用新资金推进AI研究。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。