TensorFlow是由谷歌人工智能团队“谷歌大脑”开发和维护的一个基于数据流编程的符号数学系统,拥有多层级结构,是一个人工智能框架。TensorFlow 可部署于各类服务器、PC终端和网页并支持GPU和TPU高性能数值计算,被广泛应用于各类机器学习算法的编程实现,其前身是谷歌的神经网络算法库DistBelief。自2015年11月9日起,TensorFlow依据阿帕奇授权协议(Apache 2.0 open source license)开放源代码。
3年多后,谷歌发布了TensorFlow 的第二代版本,不仅提升了可用性,增加了Eager Execution的支持,让TensorFlow 2.0可以更快地启动AI模型,同时还新增了两大互补模块保护用户数据隐私。
3月初,谷歌推出了其人工智能框架TensorFlow的2.0版本,以及两个能够让算法更负责任地处理用户数据的互补模块。
首先,TensorFlow 2.0重点提高了可使用性。为此,其中还接入了基于Keras的简化应用编程接口。Keras是一种开源工具,能够使人工智能开发框架更易于使用,它允许工程师在一个位置访问以前分布在多个API中的功能,并提供更多自定义开发工作流程的选项。
此外,TensorFlow 2.0的另一个关键升级是增加了Eager Execution的支持。这让TensorFlow 2.0可以更快地启动AI模型,通过更短的测试运行延迟,让工程师们可以尝试不同的模型变量。考虑到机器学习开发的高度迭代性,这将节省大量的时间成本。
值得一提的是,尽管TensorFlow 2.0在功能上有了显着的提升,但这次发布最引人关注的却是另外两个互补模块,这两个模块旨在帮助开发人员直接在AI软件中构建隐私控制,从而更好地保护用户信息。
其中,第一个模块是TensorFlow Privacy。通过自动过滤与算法通常接收的信息不同的输入,机器学习模型就能够自动筛除潜在敏感数据。例如,基于AI的拼写检查工具往往将字母作为输入,这意味着它可以轻松识别和过滤诸如信用卡号之类的长数字序列。
“TensorFlow Privacy并不要求使用者必须具备隐私或基础数学方面的专业知识,那些使用标准TensorFlow的开发者也不需要改变他们的模型架构、培训程序或流程就可以正常使用。”谷歌工程师Carey Radebaugh和Ulfar Erlingsson在博客中这样说。
另一个新的隐私模块名为TensorFlow Federated,它主要针对越来越多依赖于AI支持核心功能的移动服务。
由于移动设备的处理能力有限,应用通常会将用户数据发送到云的后端进行分析,然后通过机器学习对数据进行处理。而TensorFlow Federated让应用可以直接在用户手机上执行分析。然后,开发人员可以收集所得到的分析结果,并利用这些结果改进AI算法,而无需再访问基础数据。这将大大保护消费者的隐私。
“通过TFF [TensorFlow Federated],我们可以展示我们所选择的机器学习模型架构,然后对所有数据进行训练,并保持每个编写器的数据的独立和本地化。”谷歌参与这个项目开发的两位工程师Alex Ingerman和Krzys Ostrowski在博客文章中这样写道。
据了解,与TensorFlow本身相似,这两个新模块将以开源许可的形式提供给用户。
好文章,需要你的鼓励
这项由浙江大学与阿里巴巴通义实验室联合开展的研究,通过创新的半在线强化学习方法,显著提升了AI界面助手在多步骤任务中的表现。UI-S1-7B模型在多个基准测试中创造了7B参数规模的新纪录,为GUI自动化代理的发展开辟了新的技术路径。
阿里巴巴联合浙江大学开发的OmniThink框架让AI学会像人类一样慢思考写作。通过信息树和概念池的双重架构,系统能够动态检索信息、持续反思,突破了传统AI写作内容浅薄重复的局限。实验显示该方法在文章质量各维度均显著超越现有最强基线,知识密度提升明显,为长文本生成研究开辟了新方向。
新加坡国立大学研究人员开发出名为AiSee的可穿戴辅助设备,利用Meta的Llama模型帮助视障人士"看见"周围世界。该设备采用耳机形态,配备摄像头作为AI伴侣处理视觉信息。通过集成大语言模型,设备从简单物体识别升级为对话助手,用户可进行追问。设备运行代理AI框架,使用量化技术将Llama模型压缩至10-30亿参数在安卓设备上高效运行,支持离线处理敏感文档,保护用户隐私。
腾讯混元3D 2.0是一个革命性的3D生成系统,能够从单张图片生成高质量的带纹理3D模型。该系统包含形状生成模块Hunyuan3D-DiT和纹理合成模块Hunyuan3D-Paint,采用创新的重要性采样和多视角一致性技术,在多项评估指标上超越现有技术,并提供用户友好的制作平台。作为开源项目,它将大大降低3D内容创作门槛,推动3D技术的普及应用。