TensorFlow是由谷歌人工智能团队“谷歌大脑”开发和维护的一个基于数据流编程的符号数学系统,拥有多层级结构,是一个人工智能框架。TensorFlow 可部署于各类服务器、PC终端和网页并支持GPU和TPU高性能数值计算,被广泛应用于各类机器学习算法的编程实现,其前身是谷歌的神经网络算法库DistBelief。自2015年11月9日起,TensorFlow依据阿帕奇授权协议(Apache 2.0 open source license)开放源代码。
3年多后,谷歌发布了TensorFlow 的第二代版本,不仅提升了可用性,增加了Eager Execution的支持,让TensorFlow 2.0可以更快地启动AI模型,同时还新增了两大互补模块保护用户数据隐私。
3月初,谷歌推出了其人工智能框架TensorFlow的2.0版本,以及两个能够让算法更负责任地处理用户数据的互补模块。
首先,TensorFlow 2.0重点提高了可使用性。为此,其中还接入了基于Keras的简化应用编程接口。Keras是一种开源工具,能够使人工智能开发框架更易于使用,它允许工程师在一个位置访问以前分布在多个API中的功能,并提供更多自定义开发工作流程的选项。
此外,TensorFlow 2.0的另一个关键升级是增加了Eager Execution的支持。这让TensorFlow 2.0可以更快地启动AI模型,通过更短的测试运行延迟,让工程师们可以尝试不同的模型变量。考虑到机器学习开发的高度迭代性,这将节省大量的时间成本。
值得一提的是,尽管TensorFlow 2.0在功能上有了显着的提升,但这次发布最引人关注的却是另外两个互补模块,这两个模块旨在帮助开发人员直接在AI软件中构建隐私控制,从而更好地保护用户信息。
其中,第一个模块是TensorFlow Privacy。通过自动过滤与算法通常接收的信息不同的输入,机器学习模型就能够自动筛除潜在敏感数据。例如,基于AI的拼写检查工具往往将字母作为输入,这意味着它可以轻松识别和过滤诸如信用卡号之类的长数字序列。
“TensorFlow Privacy并不要求使用者必须具备隐私或基础数学方面的专业知识,那些使用标准TensorFlow的开发者也不需要改变他们的模型架构、培训程序或流程就可以正常使用。”谷歌工程师Carey Radebaugh和Ulfar Erlingsson在博客中这样说。
另一个新的隐私模块名为TensorFlow Federated,它主要针对越来越多依赖于AI支持核心功能的移动服务。
由于移动设备的处理能力有限,应用通常会将用户数据发送到云的后端进行分析,然后通过机器学习对数据进行处理。而TensorFlow Federated让应用可以直接在用户手机上执行分析。然后,开发人员可以收集所得到的分析结果,并利用这些结果改进AI算法,而无需再访问基础数据。这将大大保护消费者的隐私。
“通过TFF [TensorFlow Federated],我们可以展示我们所选择的机器学习模型架构,然后对所有数据进行训练,并保持每个编写器的数据的独立和本地化。”谷歌参与这个项目开发的两位工程师Alex Ingerman和Krzys Ostrowski在博客文章中这样写道。
据了解,与TensorFlow本身相似,这两个新模块将以开源许可的形式提供给用户。
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。