至顶网软件频道消息: IBM研究人员认为,他们已经研究出了一种新的算法,能够在量子计算机上实现高级机器学习。
IBM研究团队今天在arXiv(一个非同行评审学术论文库)上发表了一篇论文,在论文中阐述了IBM是如何开发出一种“量子算法”,这种算法让计算机能够以远超过传统计算机能力范围的方式做“特征映射”。
量子计算利用了亚原子粒子在任何时候都能以多种状态存在的这一“奇异”能力。由于粒子是最微小的表现方式,因此量子计算相比传统计算速度更快,能耗更低。
在传统计算方式中,一个比特就是一个信息单位,有0或者1两种存在方式。而量子计算采用的是量子比特或“量子位”,可以存储比0或者1更多的信息,因为这些信息是可以以叠加的方式存在。
IBM研究团队解释说,特征映射是一种拆解信息的过程,可以获取数据“更精细的部分”。传统的机器学习算法已经可以在一定程度上做到这一点,例如通过获取图像像素并将每个颜色值放入网格中。然后,算法会以非线性方式将这些值映射到高维度空间,根据最有用的特征对数据进行分解。
不过IBM新公布的量子算法更进一步,甚至可以将这些数据的不同方面和不同特征更大程度上分离开。这一点很重要,因为对数据的分类越精准,机器学习系统的效率就越高。
IBM研究团队表示:“我们的目标是利用量子计算机打造出新的分类器,生成更复杂的数据映射。这样研究人员就能够开发出更高效的人工智能,例如,让人工智能识别出传统计算机无法识别的数据模式。”
IBM研究人员指出,这个新的算法尚未完全发出“量子优势”,而这正是量子计算机超越传统计算机的一个关键点。IBM表示,这主要是因为量子计算机还处于起步阶段,仍然受到当前硬件能力方面的限制。
“我们的研究尚未完全展现量子的优势,因为我们基于当前的硬件能力,将问题的范围最小化,仅仅使用两个量子位的计算量,而这是可以在传统计算机上进行模拟的,”IBM研究人员这样表示。
尽管如此,Constellation Research分析师Holger Mueller认为,IBM的研究再一次证明了量子计算是如何以远超过目前任何计算基础设施的能力操作下一代应用的。
Mueller说:“IBM已经向我们展现了特定的计算机学习算法——例如特征映射——在量子计算机上运行的效果要远远好于其他任何计算机。特征调用算法也非常适合运行在量子计算机上。”
IBM表示,将通过IBM面向开发者、研究人员和其他专家群体的Qiskit Aqua开源库向所有人提供这些新的算法。
好文章,需要你的鼓励
AI能让够更早,更准确的发现并预测癌变的发生,这也是目前AI医疗的的一个主流发展方向,更早的发现,更准确的预测。最近一项来自美国国立卫生研究院(NIH)的研究就在对肺癌精准预测方向上取得了重大突破
字节跳动联合浙江大学发布了ImmerseGen系统,这是一个能根据文字描述自动生成VR世界的AI工具。该系统采用轻量化代理和RGBA纹理技术,用AI代理协作完成从地形生成到物体布置的全流程,还能添加动态效果和环境音效。相比传统方法,它生成的场景效率提升数十倍,在移动VR设备上达到79帧流畅运行,为VR内容创作带来革命性突破。
Salesforce发布Agentforce 3平台重大升级,新增指挥中心提供AI智能体实时性能监控,支持MCP开放标准实现与数百种企业工具无缝集成。数据显示AI智能体使用量六个月内激增233%,超8000家客户部署该技术。百事可乐等全球企业已将其深度集成到业务运营中。新版本还提供50%更低延迟、增强安全性和200多个预配置行业操作模板,帮助企业快速部署功能性AI智能体。
慕尼黑大学研究团队开发了SwarmAgentic技术,这是首个能够完全自主生成智能体系统的框架,无需人工预设模板。该技术借鉴蜂群智能原理,让AI系统自己决定需要什么角色、如何分工协作。在旅行规划等六项复杂任务测试中,SwarmAgentic表现优异,在旅行规划任务上比现有最佳方法提升261.8%,展现了全自动智能体系统设计的巨大潜力。