微软新推出的Project Zipline压缩算法,足够快到可以在压缩数据的同时,把数据写入SSD或者从物联网设备进行上传,而且在微软内部工作负载,也就是最初开发时的目标对象上获得高达96%的压缩率。
如此快速和高效,是因为它采用了一种自定义硬件加速器,可以多次寻找出比压缩算法通常处理的更多模式;而且匹配这些模式的数据,将被模式的一个参考所取代,从而占用的空间更小。
因此,微软除了发布压缩算法规范作为自己对Open Compute Project Foundation的贡献之外,还发布了运行该算法开发芯片所需的Verilog Register-transfer Level (RTL)文件。
微软计划在Project Cerberus下一代版本中也做相同的事情,Project Cerberus硬件“信任根”规范的目标,是帮助固件防止恶意软件入侵,让你不再担心所订购的硬件是否曾经被篡改过。第一个版本有一个单独的控制器,可以插入服务器上的PCI总线,但是微软希望在芯片(例如CPU)层面——甚至是内存和存储层面——也有相同的保护措施。而且,当微软向OCP贡献第二代Cerberus规范的时候,其中就将包含RTL文件,这样厂商们就可以轻松地将其添加到自己的芯片设计中。
物理实现是最棘手的部分;硬件提供商通常会在他们交付基于开放标准的系统时,自行来解决这个部分的问题,因为这是他们相互竞争的一个部分。但是你希望的是厂商采用你的开放标准,因为对你来说,使用的人越多就越有用。
如果你按照厂商希望的那样,在Open Data Initiative下把数据从Azure迁移到Adobe的营销云、SAP或者Dynamics上,那么在迁移数据的同时,对数据进行压缩——而不是扩展——操作就会更有意义。这样做,意味着云和你使用的任何服务器都需要支持Zipline。
使用Verilog和RTL文件(用于描述构成芯片设计的电路)——来指定芯片设计,这一点是很困难的。拥有这种技能的程序员寥寥无几,而且这也不是一种常见技能,这就解释了为什么很多超大规模云计算——而不是普通的企业——才能够利用FPGA的灵活性来交付经过精确设计可以有效运行特定算法的硬件。微软通过开放这种往往仅用于微软内部的设计,让自己更容易把Project Zipline和Cerberus构建到产品中,从而才能被更多的人使用。
Intel、AMD、Ampere、Arm、Marvell和SiFive都在开发采用Zipline的CPU;Broadcom、Fungible、Mellanox、Eideticom、NGD和Pure Storage正在将Zipline添加到自己定位网卡和存储系统中。虽然英特尔没有明确表示会把Cerberus下一代版本构建到自己的CPU中,但邀请微软Cerberus团队参加OCP峰会并做主题演讲,很大程度上是一个很明显的迹象了。
这可能是前所未有的开放贡献,但也非常符合OCP的精神,对于超大规模云提供商来说,OCP最初的目标是让厂商能够更轻松地打造出他们希望采购的硬件。
现在,OCP已经远远不局限于服务器和机架,其衍生产品对于更多企业组织来说是有意义的,因此微软完全有理由这样做。
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
微软亚洲研究院开发出革命性的认知启发学习框架,让AI能够像人类一样思考和学习。该技术通过模仿人类的注意力分配、记忆整合和类比推理等认知机制,使AI在面对新情况时能快速适应,无需大量数据重新训练。实验显示这种AI在图像识别、语言理解和决策制定方面表现卓越,为教育、医疗、商业等领域的智能化应用开辟了新前景。