至顶网软件频道消息:上周发表的《自然》(Nature)杂志刊载了IBM和麻省理工学院在量子计算机上实现机器学习的一些有趣的研究结果。
文章提及,在有些机器学习方面,量子计算机实际上比经典(即是说电子)计算机更具有一定的优势。
至于量子是否可以导致“杀手级应用程序”尚无定论。如果只是一些在量子计算中可以做而在经典计算中很难做到的东西是不足以成为杀手级应用程序的;必须是值得做的东西。
IBM旗下T.J. Watson研究中心的研究人员(包括Vojtech Havlícek、AntonioD.Córcoles、Kristan Temme、Abhinav Kandala、Jerry M. Chow和Jay M. Gambetta)与麻省理工学院理论物理中心的Aram W. Harrow合作撰写了《自然》杂志文章,题为“量子增强特征空间里的监督学习” (https://www.nature.com/articles/s41586-019-0980-2)。另外有一篇独立的补充材料文章 (https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-019-0980-2/MediaObjects/41586_2019_980_MOESM1_ESM.pdf)也绝对值得一读。
Temme和Gambetta还撰写了一篇博客文章(https://www.ibm.com/blogs/research/2019/03/machine-learning-quantum- advantage/)。
以上的研究人员在IBM的“IBM Q”量子机器上运行了机器学习算法,而且他们是用两个量子比特(Qubits)完成的,因此是个现在就能用的实际系统,并不是要等十年后才可能上线的几十个量子比特。
IBM的双量子比特量子机将数据编成“特征映射”,用了两层Hadamard门及名为相位门的交织。(图:
IBM)。
研究人员用量子比特构建了一个分类器程序,该程序根据数据中的模式学习如何将数据分配到不同的类别。他们发现如果用两个 Hadamard门构建分类器就可以得到比传统计算机更复杂的功能。Hadamard门是一种类似于傅里叶变换的数据转换。
他们用的的机器学习并不是深度学习,而是传统上被称为“浅”网络的机器学习,他们用了 “支持向量机”或SVM的量子版,SVM是由Vladimir Vapnik在上世纪90年代提出的。
具单个权重“内核”的SVM将输入数据转换为“特征映射”后,数据可以被彻底分离并置放在不同的桶里。 Havlícek及其同事寻找的是在经典计算机上难以计算的特征映射。他们在文章里提到,他们发现一些所需要的特征映射,这些特征映射需要用到上面提到的多个Hadamard门。
问题是会不会有人想要极复杂的特征映射。深度学习领域多年来都是认为SVM方法和类似内核方法比诸如卷积神经网络(CNN)或递归神经网络( RNNs)等支持深度神经网络的的方法性能差一些。
蒙特利尔大学MILA学院的Yoshua Bengio及其同事在2013年的文章里提到,深层网络可表达成等级结构(https://arxiv.org/abs/1206.5538)。深度学习的全部意义在于,计算限制的约束迫使深度网络使用一个规则达到产生抽象的目的,从而导致有意义的普遍化。
正如Bengio在文章里写的,“我们可以用层次结构里的其他概念来描述我们周围的世界,这是一个有用的概念,层次结构里高层更抽象的概念可以用不那么抽象的概念来定义。”
机器学习的深度学习形式的智能来自限制。限制迫使抽象的分级,进而导致数据更复杂的表达方法。IBM研究人员也是在寻求构建表达的方法,只不过他们要构建的是一个非常难于计算的单一特征映射。
好文章,需要你的鼓励
K Prize是由Databricks和Perplexity联合创始人推出的AI编程挑战赛,首轮比赛结果显示,获胜者巴西工程师Eduardo Rocha de Andrade仅答对7.5%的题目就获得5万美元奖金。该测试基于GitHub真实问题,采用定时提交系统防止针对性训练,与SWE-Bench 75%的最高得分形成鲜明对比。创始人承诺向首个在该测试中得分超过90%的开源模型提供100万美元奖励。
T-Tech公司研究团队开发了SAE Boost助推器系统,通过训练专门的"错误补偿器"来增强AI理解工具对专业领域的理解能力。该系统在化学、俄语和外交等领域测试中显示出显著改进效果,同时完全保持原有通用能力。这种模块化设计为AI系统的持续优化提供了安全可靠的路径,对AI可解释性研究具有重要意义。
阿里巴巴通义千问团队发布开源编程模型Qwen3-Coder-480B-A35B-Instruct,专门用于软件开发辅助。该模型采用混合专家架构,拥有4800亿参数,支持25.6万token上下文长度,可在数秒内创建完整功能应用。在SWE-bench基准测试中得分67.0%,表现优于GPT-4和Gemini。模型基于Apache 2.0开源许可,企业可免费使用。AI研究者称其可能是目前最佳编程模型,特别适合企业级代码库理解、自动化代码审查和CI/CD系统集成。
斯坦福大学研究团队开发出革命性AI系统,能够像生物学家一样"看懂"蛋白质三维结构并预测功能。该系统通过多层次分析方法,在蛋白质功能预测方面达到90%以上准确率,为新药开发和精准医疗开辟新道路。这项技术不仅加速了蛋白质研究进程,更为解决复杂疾病提供了强大的AI助手,预示着人工智能与生物医学融合的美好前景。