至顶网软件频道消息:上周发表的《自然》(Nature)杂志刊载了IBM和麻省理工学院在量子计算机上实现机器学习的一些有趣的研究结果。
文章提及,在有些机器学习方面,量子计算机实际上比经典(即是说电子)计算机更具有一定的优势。
至于量子是否可以导致“杀手级应用程序”尚无定论。如果只是一些在量子计算中可以做而在经典计算中很难做到的东西是不足以成为杀手级应用程序的;必须是值得做的东西。
IBM旗下T.J. Watson研究中心的研究人员(包括Vojtech Havlícek、AntonioD.Córcoles、Kristan Temme、Abhinav Kandala、Jerry M. Chow和Jay M. Gambetta)与麻省理工学院理论物理中心的Aram W. Harrow合作撰写了《自然》杂志文章,题为“量子增强特征空间里的监督学习” (https://www.nature.com/articles/s41586-019-0980-2)。另外有一篇独立的补充材料文章 (https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-019-0980-2/MediaObjects/41586_2019_980_MOESM1_ESM.pdf)也绝对值得一读。
Temme和Gambetta还撰写了一篇博客文章(https://www.ibm.com/blogs/research/2019/03/machine-learning-quantum- advantage/)。
以上的研究人员在IBM的“IBM Q”量子机器上运行了机器学习算法,而且他们是用两个量子比特(Qubits)完成的,因此是个现在就能用的实际系统,并不是要等十年后才可能上线的几十个量子比特。
IBM的双量子比特量子机将数据编成“特征映射”,用了两层Hadamard门及名为相位门的交织。(图:
IBM)。
研究人员用量子比特构建了一个分类器程序,该程序根据数据中的模式学习如何将数据分配到不同的类别。他们发现如果用两个 Hadamard门构建分类器就可以得到比传统计算机更复杂的功能。Hadamard门是一种类似于傅里叶变换的数据转换。
他们用的的机器学习并不是深度学习,而是传统上被称为“浅”网络的机器学习,他们用了 “支持向量机”或SVM的量子版,SVM是由Vladimir Vapnik在上世纪90年代提出的。
具单个权重“内核”的SVM将输入数据转换为“特征映射”后,数据可以被彻底分离并置放在不同的桶里。 Havlícek及其同事寻找的是在经典计算机上难以计算的特征映射。他们在文章里提到,他们发现一些所需要的特征映射,这些特征映射需要用到上面提到的多个Hadamard门。
问题是会不会有人想要极复杂的特征映射。深度学习领域多年来都是认为SVM方法和类似内核方法比诸如卷积神经网络(CNN)或递归神经网络( RNNs)等支持深度神经网络的的方法性能差一些。
蒙特利尔大学MILA学院的Yoshua Bengio及其同事在2013年的文章里提到,深层网络可表达成等级结构(https://arxiv.org/abs/1206.5538)。深度学习的全部意义在于,计算限制的约束迫使深度网络使用一个规则达到产生抽象的目的,从而导致有意义的普遍化。
正如Bengio在文章里写的,“我们可以用层次结构里的其他概念来描述我们周围的世界,这是一个有用的概念,层次结构里高层更抽象的概念可以用不那么抽象的概念来定义。”
机器学习的深度学习形式的智能来自限制。限制迫使抽象的分级,进而导致数据更复杂的表达方法。IBM研究人员也是在寻求构建表达的方法,只不过他们要构建的是一个非常难于计算的单一特征映射。
好文章,需要你的鼓励
CIO们正面临众多复杂挑战,其多样性值得关注。除了企业安全和成本控制等传统问题,人工智能快速发展和地缘政治环境正在颠覆常规业务模式。主要挑战包括:AI技术快速演进、IT部门AI应用、AI网络攻击威胁、AIOps智能运维、快速实现价值、地缘政治影响、成本控制、人才短缺、安全风险管理以及未来准备等十个方面。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
过去两年间,许多组织启动了大量AI概念验证项目,但失败率高且投资回报率令人失望。如今出现新趋势,组织开始重新评估AI实验的撒网策略。IT观察者发现,许多组织正在减少AI概念验证项目数量,IT领导转向商业AI工具,专注于有限的战略性目标用例。专家表示,组织正从大规模实验转向更专注、结果导向的AI部署,优先考虑能深度融入运营工作流程并产生可衡量结果的少数用例。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。