至顶网软件频道消息: 刚刚与大众汽车公司(Volkswagen AG)达成重大的基础设施协议,AWS马不停蹄地又在今天推出了让企业在使用其云平台时更具灵活性的新功能。
主要亮点是一款名为AWS Deep Learning Containers的软件包,它由来自开源生态系统的主流人工智能工具组成,AWS将这些工具打包到Docker容器中,使其可以轻松部署在不同类型的AWS计算实例上。这么做的目的是为了让工程师在短短几分钟时间内,就能设置好基于云的人工智能开发环境。
Deep Learning Containers还打包了很多提高AI性能的优化。例如,AWS预打包版本的TensorFlow深度学习框架,可以训练神经网络使其速度提高到最初版本的两倍,而这主要是通过允许软件更有效地在AWS云平台将工作分布到不同图形卡上实现的。
TensorFlow是这次AWS发布Deep Learning Container仅支持的两款AI工具之一,另外一个工具是Apache MXNet。Amazon表示,未来还将支持更多框架。
AWS人工智能总经理Matt Wood表示,Deep Learning Container旨在帮助企业利用优化的、预打包的容器图像快速设置深度学习环境,“我们希望让机器学习不再那么深奥难懂”。
此外,AWS还针对Redshift数据仓库的一款新自动化工具,旨在减少客户的管理开销。这个名为Concurrency Scaling的机制可以在出现使用高峰时分配额外的处理能力,并在需要时取消额外资源配置。AWS还借这次机会正式宣布App Mesh网络监控工具全面上市。
除了以上这些新功能之外,AWS还推出了三个基础设施选项,主要针对那些希望削减云支出的企业。第一个是Glacier Deep Archive,是AWS S3对象存储服务中的一个新层,旨在保护不常访问的数据如财务审计日志等。它比AWS为此类用例提供的现有S3 Glacier Archive层便宜75%。
此外AWS还发布了M5a和R5a计算实例系列的新版本,这些实例于去年11月份推出,采用了AWS的芯片,比基于英特尔至强处理器的AWS设备成本低10%。
据AWS介绍,M5a和R5a节点可以配置75GB到3.6TB的直连NVMe闪存驱动器,由于非常靠近底层物理服务器,因此访问速度要高于常规存储。
好文章,需要你的鼓励
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AI虽具备变革企业洞察力的潜力,但成功依赖于数据质量。大多数AI项目失败源于数据混乱分散而非算法局限。谷歌BigQuery云数据AI平台打破数据孤岛,简化治理,加速企业AI应用。通过AI自动化数据处理,实现实时分析,并与Vertex AI深度集成,使企业能够高效处理结构化和非结构化数据,将智能商业转型从愿景变为现实。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。