至顶网软件频道消息:计算机协会(简称ACM)被很多人称为“计算机界诺贝尔奖”的图灵大奖,本届将授予Yoshua Bengio、Geoffrey Hinton以及Yann LeCun三位大师,以鼓励他们在AI领域做出的创新贡献。
奖项中的100万美元奖金由谷歌公司提供。也许有些朋友还不了解,这一大奖以英国数学家阿兰·图灵命名,以纪念他在奠定计算机科学基础理论方面的巨大成就。
此次三位得奖者的功绩,在于利用神经网络进行计算,从而为深度学习技术建立起概念与工程技术基础。Benjio目前担任蒙特利尔大学教授,同时亦是Mila(位于魁北克的AI研究所)与数据实验研究所科学主任。Hinton目前担任谷歌公司副总裁兼工程研究员,Vector研究院首席科学顾问以及多伦多大学教授。LeCun则身为Facebook公司副总裁兼首席AI科学家,同时亦在纽约大学担任教授职务。此外,Bengio与LeCun还是CIFAR机器与脑力学习项目的联席主管。
ACM主席Cherri M. Pancake在一份声明中表示,“人工智能已经成为当前各个科学领域当中发展速度最快的学科之一,亦在社会上受到人们的广泛关注。AI的快速增长与关注度提升,在很大程度上要归功于Bengio、Hinton以及LeCun在深度学习基础理论奠定方面带来的最新进展。目前,有数十亿人在使用这些技术,任何拥有智能手机的人们都可以随时体验到自然语言处理与计算机视觉所带来的科技进步——而这一切在十年之前是根本无法想象的。除了我们日常使用的产品之外,深度学习技术的最新进展还为科学家们带来了强大的新工具,从而支撑起从医学、到天文学、再到材料科学的多学科协同创新能力。”
在过去几年当中,三位图灵奖得主一直努力利用算法从语言、环境以及其它对象当中提取数据模式,并推动面向数字化图像与视频的语音识别、机器人以及机器学习技术取得突破性进展。如今,这些深层神经网络已经在图像识别方面拥有令人满意的表现。
根据麻省理工学院的定义,神经网络代表一种机器学习实现方法,其中计算机通过分析训练样本以学习执行某项任务。一般而言,这些示例样本需要预先进行手动标记。例如,我们需要向物体识别系统馈送大量包含汽车、房屋以及咖啡杯等对象的标记图像,并由其在图像当中找到与特定标签相关联的视觉图形。
他们还尝试利用大型数据集训练图形处理能力,这类训练负载与并行计算模式拥有良好的匹配效果。相关成果当前已经给诸多行业带来颠覆,包括交通、医疗保健以及电子商务等等。事实上,他们的许多发现被实际应用于日常技术场景,例如智能手机上的人脸识别、无人驾驶汽车以及谷歌的预测性电子邮件文本等。
Pancake指出,“任何拥有智能手机的人们都可以随时体验到自然语言处理与计算机视觉所带来的科技进步——而这一切在十年之前是根本无法想象的。除了我们日常使用的产品之外,深度学习技术的最新进展还为科学家们带来了强大的新工具,从而支撑起从医学、到天文学、再到材料科学的多学科协同创新能力。”
ACM将在今年6月5日于旧金山召开的年度颁奖宴会上,正式颁发2018年图灵奖。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。