至顶网软件频道消息:计算机协会(简称ACM)被很多人称为“计算机界诺贝尔奖”的图灵大奖,本届将授予Yoshua Bengio、Geoffrey Hinton以及Yann LeCun三位大师,以鼓励他们在AI领域做出的创新贡献。
奖项中的100万美元奖金由谷歌公司提供。也许有些朋友还不了解,这一大奖以英国数学家阿兰·图灵命名,以纪念他在奠定计算机科学基础理论方面的巨大成就。
此次三位得奖者的功绩,在于利用神经网络进行计算,从而为深度学习技术建立起概念与工程技术基础。Benjio目前担任蒙特利尔大学教授,同时亦是Mila(位于魁北克的AI研究所)与数据实验研究所科学主任。Hinton目前担任谷歌公司副总裁兼工程研究员,Vector研究院首席科学顾问以及多伦多大学教授。LeCun则身为Facebook公司副总裁兼首席AI科学家,同时亦在纽约大学担任教授职务。此外,Bengio与LeCun还是CIFAR机器与脑力学习项目的联席主管。
ACM主席Cherri M. Pancake在一份声明中表示,“人工智能已经成为当前各个科学领域当中发展速度最快的学科之一,亦在社会上受到人们的广泛关注。AI的快速增长与关注度提升,在很大程度上要归功于Bengio、Hinton以及LeCun在深度学习基础理论奠定方面带来的最新进展。目前,有数十亿人在使用这些技术,任何拥有智能手机的人们都可以随时体验到自然语言处理与计算机视觉所带来的科技进步——而这一切在十年之前是根本无法想象的。除了我们日常使用的产品之外,深度学习技术的最新进展还为科学家们带来了强大的新工具,从而支撑起从医学、到天文学、再到材料科学的多学科协同创新能力。”
在过去几年当中,三位图灵奖得主一直努力利用算法从语言、环境以及其它对象当中提取数据模式,并推动面向数字化图像与视频的语音识别、机器人以及机器学习技术取得突破性进展。如今,这些深层神经网络已经在图像识别方面拥有令人满意的表现。
根据麻省理工学院的定义,神经网络代表一种机器学习实现方法,其中计算机通过分析训练样本以学习执行某项任务。一般而言,这些示例样本需要预先进行手动标记。例如,我们需要向物体识别系统馈送大量包含汽车、房屋以及咖啡杯等对象的标记图像,并由其在图像当中找到与特定标签相关联的视觉图形。
他们还尝试利用大型数据集训练图形处理能力,这类训练负载与并行计算模式拥有良好的匹配效果。相关成果当前已经给诸多行业带来颠覆,包括交通、医疗保健以及电子商务等等。事实上,他们的许多发现被实际应用于日常技术场景,例如智能手机上的人脸识别、无人驾驶汽车以及谷歌的预测性电子邮件文本等。
Pancake指出,“任何拥有智能手机的人们都可以随时体验到自然语言处理与计算机视觉所带来的科技进步——而这一切在十年之前是根本无法想象的。除了我们日常使用的产品之外,深度学习技术的最新进展还为科学家们带来了强大的新工具,从而支撑起从医学、到天文学、再到材料科学的多学科协同创新能力。”
ACM将在今年6月5日于旧金山召开的年度颁奖宴会上,正式颁发2018年图灵奖。
好文章,需要你的鼓励
全新搜索方式出现,字节发布宽度优先搜索基准WideSearch,垫底的竟是DeepSeek
阿里巴巴团队推出DeepPHY,这是首个专门评估AI视觉语言模型物理推理能力的综合平台。通过六个不同难度的物理环境测试,研究发现即使最先进的AI模型在物理推理任务中表现也远低于人类,成功率普遍不足30%。更关键的是,AI模型虽能准确描述物理现象,却无法将描述性知识转化为有效控制行为,暴露了当前AI技术在动态物理环境中的根本缺陷。
GitHub CEO声称AI将承担所有编程工作,但现实中AI编程工具实际上降低了程序员的生产效率。回顾编程语言发展史,从Grace Hopper的高级语言到Java等技术,每次重大突破都曾因资源限制和固有思维遭到质疑,但最终都证明了抽象化的价值。当前AI编程工具面临命名误导、过度炒作和资源限制三重困扰,但随着技术进步,AI将有助于消除思想与结果之间的障碍。
AgiBot团队联合新加坡国立大学等机构开发出Genie Envisioner机器人操作统一平台,首次将视频生成技术应用于机器人控制。该系统通过100万个操作视频学习,让机器人能够预测行动结果并制定策略,在多个复杂任务上表现优异,仅需1小时数据即可适应新平台,为通用机器人智能开辟全新路径。