至顶网软件频道消息:计算机协会(简称ACM)被很多人称为“计算机界诺贝尔奖”的图灵大奖,本届将授予Yoshua Bengio、Geoffrey Hinton以及Yann LeCun三位大师,以鼓励他们在AI领域做出的创新贡献。
奖项中的100万美元奖金由谷歌公司提供。也许有些朋友还不了解,这一大奖以英国数学家阿兰·图灵命名,以纪念他在奠定计算机科学基础理论方面的巨大成就。
此次三位得奖者的功绩,在于利用神经网络进行计算,从而为深度学习技术建立起概念与工程技术基础。Benjio目前担任蒙特利尔大学教授,同时亦是Mila(位于魁北克的AI研究所)与数据实验研究所科学主任。Hinton目前担任谷歌公司副总裁兼工程研究员,Vector研究院首席科学顾问以及多伦多大学教授。LeCun则身为Facebook公司副总裁兼首席AI科学家,同时亦在纽约大学担任教授职务。此外,Bengio与LeCun还是CIFAR机器与脑力学习项目的联席主管。
ACM主席Cherri M. Pancake在一份声明中表示,“人工智能已经成为当前各个科学领域当中发展速度最快的学科之一,亦在社会上受到人们的广泛关注。AI的快速增长与关注度提升,在很大程度上要归功于Bengio、Hinton以及LeCun在深度学习基础理论奠定方面带来的最新进展。目前,有数十亿人在使用这些技术,任何拥有智能手机的人们都可以随时体验到自然语言处理与计算机视觉所带来的科技进步——而这一切在十年之前是根本无法想象的。除了我们日常使用的产品之外,深度学习技术的最新进展还为科学家们带来了强大的新工具,从而支撑起从医学、到天文学、再到材料科学的多学科协同创新能力。”
在过去几年当中,三位图灵奖得主一直努力利用算法从语言、环境以及其它对象当中提取数据模式,并推动面向数字化图像与视频的语音识别、机器人以及机器学习技术取得突破性进展。如今,这些深层神经网络已经在图像识别方面拥有令人满意的表现。
根据麻省理工学院的定义,神经网络代表一种机器学习实现方法,其中计算机通过分析训练样本以学习执行某项任务。一般而言,这些示例样本需要预先进行手动标记。例如,我们需要向物体识别系统馈送大量包含汽车、房屋以及咖啡杯等对象的标记图像,并由其在图像当中找到与特定标签相关联的视觉图形。
他们还尝试利用大型数据集训练图形处理能力,这类训练负载与并行计算模式拥有良好的匹配效果。相关成果当前已经给诸多行业带来颠覆,包括交通、医疗保健以及电子商务等等。事实上,他们的许多发现被实际应用于日常技术场景,例如智能手机上的人脸识别、无人驾驶汽车以及谷歌的预测性电子邮件文本等。
Pancake指出,“任何拥有智能手机的人们都可以随时体验到自然语言处理与计算机视觉所带来的科技进步——而这一切在十年之前是根本无法想象的。除了我们日常使用的产品之外,深度学习技术的最新进展还为科学家们带来了强大的新工具,从而支撑起从医学、到天文学、再到材料科学的多学科协同创新能力。”
ACM将在今年6月5日于旧金山召开的年度颁奖宴会上,正式颁发2018年图灵奖。
好文章,需要你的鼓励
Teraswitch 与 EXA Infrastructure 合作,将其全球网络升级至 400GE 连接。此举旨在满足 AI、云计算和流媒体平台等领域日益增长的连接需求。升级不仅提高带宽,还降低成本,有助于 Teraswitch 在竞争激烈的市场中快速扩张。EXA 作为可靠合作伙伴,将支持 Teraswitch 到 2025 年实现全球网络扩张计划。
调查显示,大多数CIO和CTO对AI代理持乐观态度,认为这项新兴技术将很快成为企业的核心。然而,负责实施的基层IT人员却存在严重疑虑。这种分歧可能源于对技术复杂性的不同理解、实施难度的担忧,以及过去AI项目失败的经历。专家建议CIO和CTO应该以解决实际问题为导向,采取分阶段实施策略,并加强与员工沟通,以推动AI代理的广泛应用。
研究显示,英国有3500万成年人面临财务困境,37%的财务困难消费者希望增加AI聊天机器人投资以获得帮助。年轻人更倾向于自我识别为弱势群体,并更愿意向AI披露财务问题。专家认为,AI可以通过分析客户服务数据来检测脆弱性,为企业提供及时支持弱势客户的机会。
本文探讨了人工智能与象棋的密切关系。作者回顾了象棋的历史演变,分析了AI对象棋的革命性影响,并提出了将象棋作为教育工具的创新理念。文章强调了象棋在AI发展中的重要地位,以及如何利用象棋促进多元文化交流和AI教育。