至顶网软件频道消息: Google希望开发者能够在托管于Google云中的Kubernetes容器中构建更多的应用。
为此,Google今天推出了一系列名为Google Cloud Code的新插件,让使用集成开发环境构建的应用(如IntelliJ和Visual Studio Code)更容易被部署到Kubernetes中。
诸如IntelliJ和Visual Studio Code之类的IDE是用于编写应用代码最流行的工具,Google也坦言不太可能很快就改变这一情况。但使用IDE可能是很麻烦的,因为其设计目的是编写“本地应用”而不是云托管应用,而本地和云环境存在很多差异,这可能导致使用IDE构建云应用的时候会出现各种错误。
Google产品经理Sean McBrean在一篇博客文章中解释说,Cloud Code的目的是要消除这些错误。
McBrean写道:“Cloud Code扩展了VS Code和IntelliJ,将IDE的所有功能和便利性带入了开发云原生Kubernetes应用的过程中。借助Google的命令行容器工具,如Skaffold和Jiband Kubectl,Cloud Code让你在构建项目的时候可以持续提供反馈,将本地编辑-编译-调试这个循环扩展到任何本地或远程Kubernetes环境中。”
McBrean解释说,有很多新概念是需要那些不熟悉Kubernetes的开发者去理解的。Cloud Code通过提供大量Kubernetes部署样本来解决这个问题,这些样本是针对调试、构建和部署应用进行预配置的,让开发者无需担心应用程序的初始设置和配置。
此外,Cloud Code让开发者可以更轻松地将Google的API与他们的应用进行集成,这样他们就可以使用Maps等Google的服务。而且与Cloud DevOps服务(如Cloud Build和Stackdriver)的进一步集成也包含在内。
“例如,一旦你的代码准备好部署,只需提交请求,就会触发Cloud Build自动构建、测试和部署你的应用,”McBrean说。
Constellation Research首席分析师、副总裁Holger Mueller表示:“为了吸引开发者,厂商们要么让变得更加高效,要么让开发者可以使用他们自己喜欢的工具,而Google通过使用面向Google Cloud代码的IntelliJ和VSCode插件同时做到了这两点。”
好文章,需要你的鼓励
工业升级的关键,或许在于智能本身。“工业+机器人”将成为通向下一阶段工业体系的核心抓手。——黄仁勋。
浙江大学等联合研究发现,AI强化学习效果取决于"模型-任务对齐"程度。当AI擅长某任务时,单样本训练、错误奖励等非常规方法也有效;但面对陌生任务时,这些方法失效,只有标准训练有用。研究团队通过大量实验证实,这种"舒适圈"现象比数据污染更能解释训练差异,为AI训练策略优化提供了新思路。
瑞士政府正式发布了自主研发的人工智能模型,该模型完全基于公共数据进行训练。这一举措标志着瑞士在AI技术自主化方面迈出重要一步,旨在减少对外国AI技术的依赖,同时确保数据安全和隐私保护。该模型的推出体现了瑞士对发展本土AI能力的战略重视。
巴赫切希尔大学研究团队通过对五种不同规模YOLO模型的量化鲁棒性测试发现,静态INT8量化虽能带来1.5-3.3倍速度提升,但会显著降低模型对噪音等图像损伤的抵抗能力。他们提出的混合校准策略仅在大型模型处理噪音时有限改善,揭示了效率与鲁棒性平衡的复杂挑战。