至顶网软件频道消息: Google希望开发者能够在托管于Google云中的Kubernetes容器中构建更多的应用。
为此,Google今天推出了一系列名为Google Cloud Code的新插件,让使用集成开发环境构建的应用(如IntelliJ和Visual Studio Code)更容易被部署到Kubernetes中。
诸如IntelliJ和Visual Studio Code之类的IDE是用于编写应用代码最流行的工具,Google也坦言不太可能很快就改变这一情况。但使用IDE可能是很麻烦的,因为其设计目的是编写“本地应用”而不是云托管应用,而本地和云环境存在很多差异,这可能导致使用IDE构建云应用的时候会出现各种错误。
Google产品经理Sean McBrean在一篇博客文章中解释说,Cloud Code的目的是要消除这些错误。
McBrean写道:“Cloud Code扩展了VS Code和IntelliJ,将IDE的所有功能和便利性带入了开发云原生Kubernetes应用的过程中。借助Google的命令行容器工具,如Skaffold和Jiband Kubectl,Cloud Code让你在构建项目的时候可以持续提供反馈,将本地编辑-编译-调试这个循环扩展到任何本地或远程Kubernetes环境中。”
McBrean解释说,有很多新概念是需要那些不熟悉Kubernetes的开发者去理解的。Cloud Code通过提供大量Kubernetes部署样本来解决这个问题,这些样本是针对调试、构建和部署应用进行预配置的,让开发者无需担心应用程序的初始设置和配置。
此外,Cloud Code让开发者可以更轻松地将Google的API与他们的应用进行集成,这样他们就可以使用Maps等Google的服务。而且与Cloud DevOps服务(如Cloud Build和Stackdriver)的进一步集成也包含在内。
“例如,一旦你的代码准备好部署,只需提交请求,就会触发Cloud Build自动构建、测试和部署你的应用,”McBrean说。
Constellation Research首席分析师、副总裁Holger Mueller表示:“为了吸引开发者,厂商们要么让变得更加高效,要么让开发者可以使用他们自己喜欢的工具,而Google通过使用面向Google Cloud代码的IntelliJ和VSCode插件同时做到了这两点。”
好文章,需要你的鼓励
香港大学和加州大学伯克利分校的一项新研究显示,在没有人工标注数据的情况下,语言模型和视觉语言模型能够更好地泛化。这一发现挑战了大型语言模型社区的主流观点,即模型需要手工标注的训练样本。研究表明,过度依赖人工示例反而可能对模型的泛化能力产生负面影响。
OpenAI 发布了一款名为 Operator 的网络自动化工具,该工具使用名为计算机使用代理 (CUA) 的新 AI 模型来控制网络浏览器。Operator 通过视觉界面观察和交互屏幕元素,模仿人类操作方式执行任务。这项技术目前仍处于研究预览阶段,OpenAI 希望通过用户反馈来改进系统功能。
大型语言模型如 ChatGPT 展现了对话能力,但它们并不真正理解所使用的词汇。研究者们在冲绳科学技术大学构建了一个受大脑启发的人工智能模型,虽然其学习能力有限,但似乎掌握了词汇背后的概念。通过模仿婴儿学习语言的方式,研究团队将人工智能训练在一个能够与世界互动的机器人中,探索如何让人工智能实现类似人类的语言理解。