在去年的Build开发者大会上,微软在第一天花了很多时间来演示未来会议的概念。在演示中,未来的Cortana支持的会议功能与Cortana与Teams、Outlook和Windows的集成一样重要。在今年的Build开发者大会上,看起来一个更加业务优先的Cortana加上各种机器人和虚拟助理服务也将出现在议程中。
从2016年以来,微软一直在打造其“对话即服务”/机器人服务。快速浏览一下今年Build 2019会议的议程,可以看出尽管Cortana在使用率和占有率方面远远落后于Alexa和Google智能助理,但并未完全出局。同时,微软似乎准备继续推动该公司在去年秋天推出的、语音优先的虚拟助理(Virtual Assistant)技术,让企业能够建立自己的个性化数字助理。
自从上次的Build开发者大会以来,微软一直致力于对Cortana重新定位,将其从独立的数字助手变成数字助手的助手。在今年的Build开发者大会上,微软计划介绍去年推出的Cortana Skills Kit for Enterprise。根据今年Enterprise Skills Kit对话环节的描述,企业可以使用该套件针对特定业务线场景开发解决方案,包括通过语音填写/撤回服务票据、检查剩余的休假等。
为了与Cortana的业务优先重点保持一致,Build 2019还有一个环节专注于介绍如何将Cortana软件开发套件与Azure IoT和Cortana蓝牙规范结合使用,以“为一线工作人员提供环境智能帮助”。
正如今年的CES所展现的那样,微软正在考虑将Virtual Assistant Solution Accelerator——而不是Cortana,作为让更多客户使用该公司的产品和服务进行语音输入的主要方式。微软在2018年11月以预览形式推出了Virtual Assistant Solution Accelerator。使用Virtual Assistant Solution Accelerator,客户可以更改助理的姓名、声音和个性,并使用一组初始会话技能。
Virtual Assistant Accelerator包括一些现成生产力的技能,包括日历、电子邮件和任务清单。这些技能与Microsoft Graph编程接口集成,这意味着它们可以连接到Office 365和Outlook.com。微软还承诺将“尽快”为这些技能添加对Google API的支持。这些技能让用户可以完成很多事情,例如在他们快要迟到时调整会面时间;通过汽车在任务列表添加内容;在酒店设置中要求延迟退房和客房服务;找到可用的会议室;找到具备特定技能的人等。
在今年的Build中,微软承诺公布更多关于其虚拟助手技术的细节和演示。可以使用微软的Conversational 人工智能认知服务构建这些类型的虚拟助手,Conversational人工智能认知服务可用于语音识别、文本到语音、语言理解和Microsoft Bot框架。
在一次会议中,微软的官员们表示他们将提供“参考硬件”并调用“麦克风阵列”(也许就像去年在Build上展示的设备一样?)
该会议环节承诺:“我们将突出介绍新的功能,包括新的非开发人员对话设计工具(Conversational Design)和语言生成(Language Generation)。”
通过其Dynamics 365产品系列,微软也在打造自己的Virtual Agent软件即服务产品系列,帮助用户设计和监控自定义机器人,而无需配备开发人员或人工智能专家。部署在Azure中、用ASP.NET Core构建的Bot Designer似乎是该服务的关键。
认知服务/技能将在Build 2019大会上成为微软“会话人工智能”方面的核心,它是微软编程接口,开发人员可以将这些接口添加到他们自己的应用程序和服务中,这样可以为他们提供“人工智能”功能。除了一些上述认知服务之外,微软还有一个专门讨论名为“Personalizer”的新服务的环节,该服务使用强化学习来理解用户的行为。(在我看来,这个新的Personalizer服务可能就是微软目前在实验基础上提供的“项目自定义决策”认知服务。)
我对于微软是否会在下周的Build 2019大会上推出Cortana-Alexa集成的更新很有兴趣,官方首次在Build 2018演示过该功能。微软和亚马逊从2018年8月份开始对该集成进行公开测试。
好文章,需要你的鼓励
zip2zip是一项创新技术,通过引入动态自适应词汇表,让大语言模型在推理时能够自动组合常用词组,显著提高处理效率。由EPFL等机构研究团队开发的这一方法,基于LZW压缩算法,允许模型即时创建和使用"超级tokens",将输入和输出序列长度减少20-60%,大幅提升推理速度。实验表明,现有模型只需10个GPU小时的微调即可适配此框架,在保持基本性能的同时显著降低计算成本和响应时间,特别适用于专业领域和多语言场景。
这项研究创新性地利用大语言模型(LLM)代替人类标注者,创建了PARADEHATE数据集,用于仇恨言论的无毒化转换。研究团队首先验证LLM在无毒化任务中表现可与人类媲美,随后构建了包含8000多对仇恨/非仇恨文本的平行数据集。评估显示,在PARADEHATE上微调的模型如BART在风格准确性、内容保留和流畅性方面表现优异,证明LLM生成的数据可作为人工标注的高效替代方案,为创建更安全、更具包容性的在线环境提供了新途径。
这项研究由中国科学技术大学的研究团队提出了Pro3D-Editor,一种新型3D编辑框架,通过"渐进式视角"范式解决了现有3D编辑方法中的视角不一致问题。传统方法要么随机选择视角迭代编辑,要么同时编辑多个固定视角,都忽视了不同编辑任务对应不同的"编辑显著性视角"。Pro3D-Editor包含三个核心模块:主视角采样器自动选择最适合编辑的视角,关键视角渲染器通过创新的MoVE-LoRA技术将编辑信息传递到其他视角,全视角精修器修复并优化最终3D模型。实验证明该方法在编辑质量和准确性方面显著优于现有技术。
这项研究提出了ComposeAnything,一个无需重新训练的框架,可显著提升AI图像生成模型处理复杂空间关系的能力。该技术由INRIA、巴黎高师和CNRS的研究团队开发,通过三个创新步骤工作:首先利用大型语言模型创建包含深度信息的2.5D语义布局,然后生成粗略的场景合成图作为先验指导,最后通过物体先验强化和空间控制去噪引导扩散过程。在T2I-CompBench和NSR-1K基准测试中,该方法远超现有技术,特别是在处理复杂空间关系和多物体场景时表现卓越,为AI辅助创意设计开辟新可能。