6月24-26日,云原生领域顶级大会KubeCon + CloudNativeCon在上海召开,作为云原生技术与应用的领先企业,阿里云全面展示了云原生产品家族,同时发布边缘容器(ACK@Edge)和云原生应用管理与交付体系,为企业数字化转型提供全方位的技术支撑。
云原生是IT基础技术以及应用的新趋势。Gartner报告指出,到2022年有75%的全球化企业将在生产中使用容器化应用。
阿里巴巴是国内最早大规模布局云原生技术体系的公司。早在2011年,阿里巴巴就率先在全集团规模部署容器化基础架构,开启了中国公司将云原生技术体系在电商、金融、制造等领域中大规模应用的先河。
历经9年技术沉淀,阿里云已拥有国内最丰富的云原生产品家族,覆盖八大类别20余款产品,涵盖底层基础设施、数据智能、分布式应用等全栈技术能力,可以满足不同行业场景的需求。
目前,阿里云上运行着国内最大的公共云容器集群及镜像仓库,广泛服务于互联网、金融、零售、制造、政务等领域企业和机构,大幅降低了应用开发的门槛,让企业轻松享受云的优势。
奥组委通过容器服务ACK,在欧洲助力奥运OCS频道敏捷开发高效运维;西门子使用阿里云ACK,实现开放式物联网操作系统MindSphere微服务架构、DevOps以及系统的高可用;迅雷使用容器混合云方案,完成云下及云上混合部署和调度,在享受极致弹性的同时降低成本。
此次发布的边缘容器可实现云、边、端一体化的应用分发,支持不同系统架构和网络状况下,应用的分发和生命周期管理。该产品采用了自研高性能Terway网络插件,将弹性网卡ENI分配给容器实例,使容器实例和计算资源使用同一个网络平面,性能较传统的overlay容器网络高出20%。
大会同时发布了云原生应用管理与交付体系,涵盖国内首个开放云原生应用中心Cloud Native App Hub、云原生应用自动化引擎OpenKruise等服务。
其中,OpenKruise 开源项目源自于阿里巴巴经济体过去多年的大规模应用部署、发布与管理的最佳实践,同时解决了 Kubernetes 之上应用的自动化管理问题。OpenKruise后续会继续覆盖部署、升级、弹性扩缩容、QoS 调节、健康检查,迁移修复等更多K8s 自动化能力。
阿里云智能容器平台负责人丁宇表示:“云原生正在重塑整个软件生命周期,容器、Kuberentes、云原生成为云时代的三个重要标准。阿里云将继续加大云原生技术栈产品体系的研发,并持续回馈开源社区,与生态合作伙伴一起,共同推动云原生标准制定以及应用的落地。”
阿里云是国内在云原生领域的开源贡献最全面的科技公司,涵盖编排调度、作业管理、无服务器框架等,主导维护etcd、containerd、dragonfly等多个CNCF明星项目的发展,已有超过10个项目进入CNCF landscape。今年1月,阿里云资深技术专家李响成为首个入选全球顶级开源社区CNCF技术监督委员会的中国工程师,致力于推动云原生技术的落地。
得益于全面的技术投入和大规模应用实践,阿里云成为国内唯一进入2019 Gartner《公有云容器服务竞争格局》报告的企业。今年3月,阿里云智能总裁张建锋表示,未来1-2年内,阿里巴巴要实现100%的业务跑在公共云之上,并且继续大力投入云原生技术的研发。
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。