在今天的一篇博客文章中,与苏黎世公司计算系统生物学小组展开的IBM研究人员Matteo Manica和Joris Cadow指出,癌症是全球第二大死亡原因,2018年新诊断的病例数约为1810万,同年有960万人死于癌症。
由于死亡人数众多,因此开发癌症治疗方法就成为人类最优先考虑的事项之一,IBM团队希望利用自己在人工智能和机器学习方面的专业知识来帮助实现这一目标。IBM最新人工智能项目的想法是试图加速对“这些复杂疾病主要驱动因素和分子机制”的理解。
两位研究人员表示:“我们的目标是深化对癌症的理解,为行业和学术界提供可能有助于推动新疗法的知识。”
第一个开源的工具是PaccMann,这是一个非常严肃项目的缩写,该项目名为“用多模式注意力神经网络预测抗癌复合物敏感性”( Prediction of anticancer compound sensitivity with Multi-modal attention-based neural networks)。
IBM表示,PaccMann旨在为开发癌症治疗药物提辅助。该算法旨在分析化合物并预测哪些化合物具有抗癌能力,以便将这些化合物作为可能的药物进行测试。该倡议可能会对癌症治疗有所帮助,因为开发一种抗癌药物通常要花费数百万美元,更不要说需要数年时间了。
第二个项目是IntERAcT,是“来自vectoR词汇表示的互动网络信息”( Interaction Network infErence from vectoR representATions of words)。
IntERAcT可以自动扫描与癌症有关的科学研究论文,并快速提取和分析其中的数据,以增强对癌症的理解。这很重要,因为每年约有17,000篇关于癌症的论文发表,研究人员无法阅读完每一篇论文。
IBM表示,IntERAcT被用于从“蛋白质 - 蛋白质相互作用”的论文中提取数据,科学家们认为,这种相互作用可能导致了发生癌症的生物过程中断。
IBM表示,INtERAcT的一个显着优势在于能够推断特定疾病背景下的相互作用,将其与健康组织中的正常相互作用进行比较有助于深入了解疾病的机制。
最后,IBM开源了PIMKL项目,即“途径诱导的多核学习”( pathway-induced multiple kernel learning),这种算法可以提取当前分子相互作用知识的数据,以预测癌症的进展情况,以及患者是否可能在治疗成功后再次复发。医生利用这些信息就可以为患者提出量身定制的治疗方案。
Constellation Research分析师Holger Mueller表示,他很高兴看到IBM开源这些算法的举动,“医疗和癌症研究诊断在采用现代技术方面具有巨大优势。这些真正的下一代应用将会对疾病和死亡率产生深远的影响。”
好文章,需要你的鼓励
CPU架构讨论常聚焦于不同指令集的竞争,但实际上在单一系统中使用多种CPU架构已成常态。x86、Arm和RISC-V各有优劣,AI技术的兴起更推动了对性能功耗比的极致需求。当前x86仍主导PC和服务器市场,Arm凭借庞大生态系统在移动和嵌入式领域领先,RISC-V作为开源架构展现巨大潜力。未来芯片设计将更多采用异构计算,多种架构协同工作成为趋势。
延世大学研究团队通过分析AI推理过程中的信息密度模式,发现成功的AI推理遵循特定规律:局部信息分布平稳但全局可以不均匀。这一发现颠覆了传统的均匀信息密度假说在AI领域的应用,为构建更可靠的AI推理系统提供了新思路,在数学竞赛等高难度任务中显著提升了AI的推理准确率。
Vast Data与云计算公司CoreWeave签署了价值11.7亿美元的多年期软件许可协议,这标志着AI基础设施存储市场的重要转折点。该协议涵盖Vast Data的通用存储层及高级数据平台服务,将帮助CoreWeave提供更全面的AI服务。业内专家认为,随着AI集群规模不断扩大,存储系统在AI基础设施中的占比可能从目前的1.9%提升至3-5%,未来五年全球AI存储市场规模将达到900亿至2000亿美元。
蒙特利尔大学团队发现让AI"分段思考"的革命性方法Delethink,通过模仿人类推理模式将长篇思考分解为固定长度块,仅保留关键信息摘要。1.5B小模型击败传统大模型,训练成本降至四分之一,计算复杂度从平方级降为线性级,能处理十万词汇超长推理,为高效AI推理开辟新道路。