在今天的一篇博客文章中,与苏黎世公司计算系统生物学小组展开的IBM研究人员Matteo Manica和Joris Cadow指出,癌症是全球第二大死亡原因,2018年新诊断的病例数约为1810万,同年有960万人死于癌症。
由于死亡人数众多,因此开发癌症治疗方法就成为人类最优先考虑的事项之一,IBM团队希望利用自己在人工智能和机器学习方面的专业知识来帮助实现这一目标。IBM最新人工智能项目的想法是试图加速对“这些复杂疾病主要驱动因素和分子机制”的理解。
两位研究人员表示:“我们的目标是深化对癌症的理解,为行业和学术界提供可能有助于推动新疗法的知识。”
第一个开源的工具是PaccMann,这是一个非常严肃项目的缩写,该项目名为“用多模式注意力神经网络预测抗癌复合物敏感性”( Prediction of anticancer compound sensitivity with Multi-modal attention-based neural networks)。
IBM表示,PaccMann旨在为开发癌症治疗药物提辅助。该算法旨在分析化合物并预测哪些化合物具有抗癌能力,以便将这些化合物作为可能的药物进行测试。该倡议可能会对癌症治疗有所帮助,因为开发一种抗癌药物通常要花费数百万美元,更不要说需要数年时间了。
第二个项目是IntERAcT,是“来自vectoR词汇表示的互动网络信息”( Interaction Network infErence from vectoR representATions of words)。
IntERAcT可以自动扫描与癌症有关的科学研究论文,并快速提取和分析其中的数据,以增强对癌症的理解。这很重要,因为每年约有17,000篇关于癌症的论文发表,研究人员无法阅读完每一篇论文。
IBM表示,IntERAcT被用于从“蛋白质 - 蛋白质相互作用”的论文中提取数据,科学家们认为,这种相互作用可能导致了发生癌症的生物过程中断。
IBM表示,INtERAcT的一个显着优势在于能够推断特定疾病背景下的相互作用,将其与健康组织中的正常相互作用进行比较有助于深入了解疾病的机制。
最后,IBM开源了PIMKL项目,即“途径诱导的多核学习”( pathway-induced multiple kernel learning),这种算法可以提取当前分子相互作用知识的数据,以预测癌症的进展情况,以及患者是否可能在治疗成功后再次复发。医生利用这些信息就可以为患者提出量身定制的治疗方案。
Constellation Research分析师Holger Mueller表示,他很高兴看到IBM开源这些算法的举动,“医疗和癌症研究诊断在采用现代技术方面具有巨大优势。这些真正的下一代应用将会对疾病和死亡率产生深远的影响。”
好文章,需要你的鼓励
随着AI技术不断发展,交通运输行业正迎来重大变革。MIT研究显示,AI将很快自动化价值650亿美元的交通工作,大幅提升运输效率。从陆地到海空,AI正在推动全方位的交通创新。斯坦福专家强调,AI将通过基础模型、合成数据和数字孪生等技术,实现从单一车辆自动化到整个交通网络优化的跨越式发展,同时解决可持续性、安全性和公平性等关键挑战。
香港科技大学团队发表重要研究,开发GIR-Bench测试基准评估统一多模态AI模型的推理与生成能力。研究发现即使最先进的AI模型在理解与生成之间也存在显著差距,无法有效将推理过程转化为准确的视觉生成,为AI行业发展提供重要警示。
波兰研究团队开发ORCA数学基准测试,对五个主流大语言模型进行评估。结果显示ChatGPT-5、Gemini 2.5 Flash、Claude Sonnet 4.5、Grok 4和DeepSeek V3.2的准确率均低于63%。测试涵盖生物化学、工程建筑、金融经济等七个领域的500道数学题目。研究发现模型主要在四舍五入和计算错误方面存在问题,表明自然语言推理进步并未直接转化为可靠的计算能力。
Meta超级智能实验室联合麻省理工学院开发了SPG三明治策略梯度方法,专门解决扩散语言模型强化学习训练中的技术难题。该方法通过上下界策略为AI模型提供精确的奖惩反馈机制,在数学和逻辑推理任务上实现了显著性能提升,为AI写作助手的智能化发展提供了新的技术路径。