至顶网软件与服务频道消息:近日在ACM SIGCOMM 2019上,阿里云两篇论文被主会收录,阿里巴巴作为唯一中国公司作现场报告。核心研究成果将用于新一代高速云网络,同时实现高速云网络的极致性能和超高稳定性。实践成熟有望替代TCP和RDMA协议的拥塞控制算法,在云数据中心大规模应用。
随着云计算发展,以数据中心为核心的超大规模云网络架构正成为主流,但传统的TCP网络协议难以支持云网络高速、低延迟的要求。RDMA等新一代技术改进了传统TCP的部分弊端,大幅提升网络性能,但仍存在相当高的不稳定性。
阿里巴巴的本次研究成果主要阐述了自研的新一代高速网络拥塞控制协议HPCC(High Precision Congestion Control),兼具性能和稳定。在其帮助下,主流云应用如分布式存储、大规模机器学习等性能将得到几倍到几十倍提升,传输延迟显著降低,更加适用云计算时代的网络需求。
SIGCOMM是计算机网络方向的世界顶级学术会议,对论文质量要求极高,必须满足基础性贡献、前瞻性影响和坚实的系统实现要求,2019大会仅录取了32篇论文。
阿里巴巴始终致力于云计算网络技术的研发,此前已通过对RDMA网络的改造,从网卡底层开始设计,结合自研交换机能力,建成全球最大规模的“RDMA高速网络”。
作为全球前三、亚太第一的云服务商,阿里云在全球19个地域拥有56个可用区,网络总带宽已达到 PB 级别超大规模,目前正在进行400G 网络的研发测试。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。