至顶网软件与服务频道消息: AWS近日透露了有关即将推出的集成数据中心硬件产品AWS Outposts更多细节。
AWS在11月公布了AWS Outposts,它实际上是一个本地数据中心系统,将成为VMware Cloud on AWS或者原生AWS云环境的扩展,有点类似于微软的Azure Stack产品,后者让企业能够在自己的数据中心运行微软Azure云服务。
有了AWS Outposts,客户就可以选择在本地运行AWS云,这一硬件系统将配备完全托管的、可配置的计算和存储机架,可以连接到亚马逊的公有云。
AWS计算服务副总裁Matt Garman在近日发表的博客文章中表示,该服务将如期在今年年底前上市。
Garman还透露了AWS Outposts最开始在本地运行支持的一些特定服务,并提供了一些用例场景。
AWS Outposts将支持众多用于计算任务的Amazon EC2实例,包括C5、M5、R5、I3en和G4,可以带或者不带存储选项。Garman表示,AWS Outposts还将支持本地的Amazon EBS卷。
同时,上市时支持的云服务包括用于容器化应用的Amazon ECS和Amazon EKS群集,用于数据分析工作负载的Amazon EMR群集,以及用于关系数据库的Amazon RDS实例,之后还将支持Amazon SageMaker和MSK。
Garman表示,AWS Outposts是金融服务、医疗、制造、媒体和娱乐等行业的理想选择。
他说:“最常见的情况之一,就是需要应用到最终用户或者现场设备的延迟控制在个位数毫秒级。客户可能需要在对精度和质量有要求的工厂车间运行计算密集型工作负载,还有一些客户拥有的图形密集型应用例如图像分析,需要对最终用户或者存储密集型工作负载进行低延迟的访问,这些负载会每天收集和处理数百TB的数据。客户希望将云部署与他们的本地环境进行集成,并使用AWS服务实现一致的混合体验。”
好文章,需要你的鼓励
北京大学团队开发的DragMesh系统通过简单拖拽操作实现3D物体的物理真实交互。该系统采用分工合作架构,结合语义理解、几何预测和动画生成三个模块,在保证运动精度的同时将计算开销降至现有方法的五分之一。系统支持实时交互,无需重新训练即可处理新物体,为虚拟现实和游戏开发提供了高效解决方案。
AI硬件的竞争才刚刚开始,华硕Ascent GX10这样将专业级算力带入桌面级设备的尝试,或许正在改写个人AI开发的游戏规则。
达尔豪斯大学研究团队系统性批判了当前AI多智能体模拟的静态框架局限,提出以"动态场景演化、智能体-环境共同演化、生成式智能体架构"为核心的开放式模拟范式。该研究突破传统任务导向模式,强调AI智能体应具备自主探索、社会学习和环境重塑能力,为政策制定、教育创新和社会治理提供前所未有的模拟工具。