9月26日,2019杭州云栖大会上,阿里云与Facebook宣布达成关于深度学习框架PyTorch的合作,开发者可以在阿里云机器学习平台上方便快捷获取PyTorch框架,使用模型训练、预测部署等全流程功能,享受云带来的便捷体验。
“通过PyTorch开源团队与阿里云智能平台的深度合作,我们有信心显著降低AI开发和应用的门槛,实现在各种行业里AI的更广泛落地。”阿里巴巴计算平台事业部总裁贾扬清表示。
PyTorch是目前全球最受欢迎的深度学习框架之一,以灵活性和易用性为特点,在AI科研以及成果转化领域有特殊优势,能帮助开发者快速、灵活开展深度学习实验,并提供无缝转换模型的torchscript,实现高性能的生产部署。
然而,传统的PyTorch框架多采用本地部署,对环境的依赖程度非常高,仅这一点就让让大部分新用户望而却步。而云计算的天然特性就解决了这一难题,开发者无需考虑环境问题,即可直接部署PyTorch框架。不仅如此,在阿里云机器学习平台上,还为机器学习开发者提供了上百种算法和大规模分布式计算服务,支持多款主流深度学习框架,提供从数据处理、模型训练、服务部署到预测的一站式服务。
随着人工智能的不断发展与运用,市面上涌现出越来越多优秀的深度学习框架,而如何在云端快速获取、运用好深度学习框架,无疑又是未来的一大趋势。
Facebook副总裁Bill jia认为,基于阿里云庞大的开发者生态,此次合作将进一步扩大PyTorch开源社区在国内研究人员及工程师社区的影响力,给用户带来更多技术支持,第一时间体验享受计算机视觉、自然语言处理和强化学习等领域源源不断的开发库与工具。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
微软研究院提出潜在分区网络(LZN),首次实现生成建模、表示学习和分类任务的真正统一。该框架通过共享高斯潜在空间和创新的潜在对齐机制,让原本独立的AI任务协同工作。实验显示LZN不仅能增强现有模型性能,还能独立完成各类任务,多任务联合训练效果更是超越单独训练。这项研究为构建下一代通用AI系统提供了新的架构思路。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
上海AI实验室开发的VLAC模型让机器人首次具备真实世界自主学习能力。该系统如同给机器人配备智能导师,能实时评估动作效果并从中学习。在四个操作任务测试中,机器人成功率从30%提升至90%,仅需200次练习。技术结合视觉、语言理解和动作生成,支持跨场景适应和人机协作,为家庭服务、医疗护理等领域应用奠定基础。