9月26日,2019杭州云栖大会上,阿里云与Facebook宣布达成关于深度学习框架PyTorch的合作,开发者可以在阿里云机器学习平台上方便快捷获取PyTorch框架,使用模型训练、预测部署等全流程功能,享受云带来的便捷体验。
“通过PyTorch开源团队与阿里云智能平台的深度合作,我们有信心显著降低AI开发和应用的门槛,实现在各种行业里AI的更广泛落地。”阿里巴巴计算平台事业部总裁贾扬清表示。
PyTorch是目前全球最受欢迎的深度学习框架之一,以灵活性和易用性为特点,在AI科研以及成果转化领域有特殊优势,能帮助开发者快速、灵活开展深度学习实验,并提供无缝转换模型的torchscript,实现高性能的生产部署。
然而,传统的PyTorch框架多采用本地部署,对环境的依赖程度非常高,仅这一点就让让大部分新用户望而却步。而云计算的天然特性就解决了这一难题,开发者无需考虑环境问题,即可直接部署PyTorch框架。不仅如此,在阿里云机器学习平台上,还为机器学习开发者提供了上百种算法和大规模分布式计算服务,支持多款主流深度学习框架,提供从数据处理、模型训练、服务部署到预测的一站式服务。
随着人工智能的不断发展与运用,市面上涌现出越来越多优秀的深度学习框架,而如何在云端快速获取、运用好深度学习框架,无疑又是未来的一大趋势。
Facebook副总裁Bill jia认为,基于阿里云庞大的开发者生态,此次合作将进一步扩大PyTorch开源社区在国内研究人员及工程师社区的影响力,给用户带来更多技术支持,第一时间体验享受计算机视觉、自然语言处理和强化学习等领域源源不断的开发库与工具。
好文章,需要你的鼓励
思科正在向全球合作伙伴传递一个明确信号:未来五年,合作伙伴的主要增长都将来自AI相关场景,唯有“AI就绪”的基础设施,才能支撑面向未来的工作方式,让企业在智能时代保持韧性与活力。
Feedzai团队首次系统评估了AI模型理解散点图的能力,创建了包含18,000张图表的大规模数据集。测试十个先进AI模型发现,在简单计数任务中部分模型准确率超90%,但精确定位任务表现不佳,准确率多在50%以下。研究还发现图表设计对AI性能有轻微影响,为AI辅助数据分析提供了重要参考。
亚马逊向AI搜索引擎Perplexity发出停止令,要求其停止允许用户创建和使用购物代理在亚马逊网站购买商品。争议核心在于控制权:亚马逊希望保持对用户购物体验的控制,而Perplexity认为AI代理只是技术进步的自然延伸。分歧在于透明度——Perplexity的代理使用用户凭据登录而不标识自己为AI代理。这被视为自主AI代理在商务领域的首次重大法律测试,将影响AI驱动网络的未来基础。
KAIST研究团队开发出MG-Select系统,首次让视觉语言机器人具备"货比三家"的决策能力。该系统通过生成多个行动候选方案并利用内部评估机制选择最优解,无需额外外部验证系统。在真实世界测试中,机器人精确操作成功率提升28%-35%,某些任务改进达168%,为机器人在医疗、制造等高精度应用领域的发展奠定重要基础。