微软今天表示,经过六个多月的测试,微软安全信息和事件管理服务Azure Sentinel现在已经全面上市。
类似Azure Sentinel这样的SIEM工具在网络安全团队中非常受欢迎,因为这种工具的工作方式是从各种来源(例如操作系统、应用、防病毒数据库和服务器日志)收集数据,然后分析所有数据以寻找安全漏洞或其他异常情况。
这种工具很容易“大海捞针”,对于必须监控庞大IT系统的企业安全团队来说,这是一项极为有用的功能。
Azure Sentinel是SIEM产品的典型代表,主要优势是与微软云服务(包括Azure基础设施产品和Office 365)的深度集成。微软认为,更深层次的集成足以使其成为那些在微软基础设施上运行大部分工作负载的客户的默认选项。
不过,微软并没有止步于此。Azure Sentinel还支持例如AWS等竞争对手的云以及本地基础设施。
Azure Sentinel依靠机器学习算法来处理安全数据,它的工作原理是过滤掉不必要的日志,将整个系统的活动模式关联起来,并将异常情况汇总成为提交给管理员的警报。
除了检测潜在的异常行为之外,Azure Sentinel还可以自动执行部分威胁响应工作流,例如它可以执行在基础机器学习模型检测到高优先级安全事件时向管理员发送电子邮件之类的任务。
Azure Sentinel还带有用于执行手动威胁分析的工具,其中的事件调查控制台让管理员能够查看可疑活动模式,并运行查询以获取相关的系统数据。
微软在今年2月首次公开预览了Azure Sentinel,该服务是按需付费的,起价为每分析1GB数据2.46美元。
好文章,需要你的鼓励
随着人工智能和高性能计算持续推动需求增长,数据中心设计正以同样惊人的速度演进。曾经的高密度机架已成为标准配置,冷却系统在数月而非数年内完成重新设计,项目在各地区的规模和复杂性不断提升。全球工程设计咨询公司Black & White Engineering指出,液冷成为标准配置、极端机架密度管理、工业化规模交付、电网约束下的电力创新、AI驱动运营设计以及可持续性成为核心设计原则,将成为2026年塑造数据中心设计、建设和运营的六大关键趋势。
Allen AI研究所联合多家顶尖机构推出SAGE智能视频分析系统,首次实现类人化的"任意时长推理"能力。该系统能根据问题复杂程度灵活调整分析策略,配备六种智能工具进行协同分析,在处理10分钟以上视频时准确率提升8.2%。研究团队创建了包含1744个真实娱乐视频问题的SAGE-Bench评估平台,并采用创新的AI生成训练数据方法,为视频AI技术的实际应用开辟了新路径。
Snowflake本周推送的一次更新导致全球范围内的"重大故障",用户长达13小时无法查询数据、文件导入失败并收到错误信息。初步调查显示,最新版本引入了不向后兼容的数据库架构更新,导致版本不匹配错误。此次故障影响了全球23个区域中的10个,包括美国、欧洲和亚洲多个数据中心。这是Snowflake一周内第二次发生事故。
中科院团队首次系统评估了AI视觉模型在文本压缩环境下的理解能力,发现虽然AI能准确识别压缩图像中的文字,但在理解深层含义、建立关联推理方面表现不佳。研究通过VTCBench测试系统揭示了AI存在"位置偏差"等问题,为视觉文本压缩技术的改进指明方向。