至顶网软件与服务频道消息: 谷歌今天宣布将把用于训练机器学习算法的Cloud AutoML服务引入数据科学家在线社区Kaggle。
Cloud AutoML是基于云的工具包,提供用于训练人工智能模型的拖拽界面。用户使用该软件可以创建自定义的机器学习模型,而无需对该主题有任何特定的技术知识。
Kaggle在线社区为数据科学家和其他机器学习爱好者提供了一个探索、分析和共享他们工作成果的空间。谷歌于2017年收购了Kaggle平台,该社区最近成员规模突破了350万这一里程碑。
谷歌表示,它正在通过将Cloud AutoML与Kaggle集成实现自己的使命,即“通过为他们提供引领该领域所需的技能和工具,使我们的数据科学家社区变得更加强大”。
Cloud AutoML允许用户从软件开发工具包或者基于Web的用户界面中提取数据,设置参数,然后基于这些数据训练模型,并将其部署在谷歌的云基础设施中。这项集成将使Kaggle用户能够利用Jupyter Notebook中的Cloud AutoML SDK,Jupyter Notebook是一个开源应用,数据科学家可以用来创建和共享包含实时代码、等式、可视化和叙述性文档。
Kaggle产品经理Devvret Rishi在博客中表示:“今天的发布重点是让我们的社区能够在Kaggle Notebooks中直接使用这个SDK。”
Cloud AutoML是一项付费服务,不过为初学者提供了免费套餐。谷歌全年向用户提供Google Cloud Platform积分,以补贴搭配Kaggle一起使用AutoML的成本。
宣布此消息之前,Kaggle与谷歌的BigQuery数据仓库服务进行了类似的集成。
好文章,需要你的鼓励
文章详细介绍了Character.AI这款主要面向娱乐、角色扮演和互动叙事的AI聊天工具的原理、用户群体、特色功能以及面临的法律与伦理争议,同时揭示了其新推出的视频和游戏互动体验。
上海人工智能实验室研究团队开发了MMSI-Bench,这是首个专注于多图像空间智能评估的全面基准。研究人员花费300多小时,从12万张图像中精心构建了1000道问题,涵盖了位置关系、属性和运动等多种空间推理任务。评测结果显示,即使最先进的AI模型也仅达到41%的准确率,远低于人类的97%,揭示了AI空间认知能力的重大缺陷。研究还识别了四类主要错误:物体识别错误、场景重建错误、情境转换错误和空间逻辑错误,为未来改进提供了明确方向。
思科报告指出,自主型人工智能未来三年内有望承担高达68%的客户服务任务,通过个性化与前瞻性支持提升效率与节省成本,但用户仍重视人与人之间的互动和健全的治理机制。
卡内基梅隆大学研究团队开发了ViGoRL系统,通过视觉定位强化学习显著提升AI的视觉推理能力。该方法让模型将每个推理步骤明确锚定到图像的特定坐标,模拟人类注视点转移的认知过程。与传统方法相比,ViGoRL在SAT-2、BLINK等多项视觉理解基准上取得显著提升,并能动态放大关注区域进行细节分析。这种定位推理不仅提高了准确性,还增强了模型解释性,为更透明的AI视觉系统铺平道路。