进入云计算时代,企业一方面要进行快速的业务创新,另一方面还要确保业务安全性和稳定性。为了满足不同类型的业务需求,越来越多的企业都构建了混合基础架构,然而,这对于数据的管理而言则意味着巨大的挑战。
目前,很多企业都是采用不同的产品来满足数据管理过程中的某一需求,而IBM Cloud Pak for Data作为业界唯一的企业级数据与AI平台,能够部署在任意云架构上,并通过统一平台实现全数据资产生命周期的管理和协同,帮助企业构建面向人工智能的信息架构。
IBM Cloud Pak for Data可以帮助企业收集位于本地环境、公有云、私有云等所有位置、所有形态的数据,并把数据存储在数据库和数据湖类型的环境中,进行混合数据管理。同时,通过数据虚拟化,企业无需数据迁移就能够对所需数据进行安全访问。
其中,IBM混合数据管理 Db2 解决方案支持任何类型的数据库或数据仓库、开源软件,可以帮助企业充分利用现有投资,随时随地灵活部署,并随数据架构的演变进行扩展。最新更新的Db2 11.5版本更是嵌入了人工智能及区块链等技术。
面对巨大的数据量,企业需要根据特定的规则和策略对数据进行组织和处理,而数据治理不是只做元数据管理+数据质量管理,更关键的是要建立数据资产目录。对此,IBM Cloud Pak for Data能够支持用户借助机器学习技术获得企业范围内的数据目录,轻松查找所需的数据,为下一步的分析做数据准备。
基于IBM Cloud Pak for Data在数据分析和数据融合层面的强大功能,企业可以分析所有数据信息,提取其中的价值,并嵌入到特定的业务场景或应用程序中。比如,用户可以借助数据科学功能,使用开源编程工具或可视界面构建预测模型,并且只需单击按钮就可以将这些模型部署到生产架构中,通过混合云场景创建强大的AI应用程序。
IBM Cloud Pak for Data有诸多关键应用场景,除了能够加速数据价值化,加快企业向合规性转型,同时还能帮助企业更快地部署及运营AI模型,提升业务成果。基于微服务架构,IBM Cloud Pak for Data还能提高企业架构敏捷性,缩短应用开发时间。
与此同时,IBM Cloud Pak for Data不仅允许不同类型的员工可以在平台上实现高效的协同,还通过创建开放的API架构,使得多组开发人员能够在上面直接进行应用构建。在整个数据或人工智能生命周期中始终维护团队协作、工作流和治理。
好文章,需要你的鼓励
施耐德电气以“新质服务+产业向‘新’行”为主题,第六次参会,展示全新升级的“新质服务体系”,围绕创新驱动、生态协同和行业赋能三大核心领域,以全新升级的“新质服务体系”,助力中国产业向高端化、智能化、绿色化迈进。
香港中文大学联合上海AI实验室推出Dispider系统,首次实现AI视频"边看边聊"能力。通过创新的三分式架构设计,将感知、决策、反应功能独立分离,让AI能像人类一样在观看视频过程中进行实时交流,在StreamingBench测试中显著超越现有系统,为教育、娱乐、医疗、安防等领域的视频AI应用开启新可能。
甲骨文正在成为大规模基础设施供应商的可靠选择。该公司通过AI技术推动应用开发,构建GenAI模型并将智能代理集成到应用套件中。CEO萨弗拉·卡茨透露,公司剩余履约义务达4553亿美元,同比增长4.6倍,并预测OCI收入将从2026财年的180亿美元增长至2030财年的1440亿美元。甲骨文正积极布局AI推理市场,凭借其作为全球最大企业私有数据托管方的优势地位,有望在云计算领域实现重大突破。
Atla公司发布Selene Mini,这是一个仅有80亿参数的AI评估模型,却在11个基准测试中全面超越GPT-4o-mini。通过精心的数据筛选和创新训练策略,该模型不仅能准确评判文本质量,还能在医疗、金融等专业领域表现出色。研究团队将模型完全开源,为AI评估技术的普及和发展做出贡献。