进入云计算时代,企业一方面要进行快速的业务创新,另一方面还要确保业务安全性和稳定性。为了满足不同类型的业务需求,越来越多的企业都构建了混合基础架构,然而,这对于数据的管理而言则意味着巨大的挑战。
目前,很多企业都是采用不同的产品来满足数据管理过程中的某一需求,而IBM Cloud Pak for Data作为业界唯一的企业级数据与AI平台,能够部署在任意云架构上,并通过统一平台实现全数据资产生命周期的管理和协同,帮助企业构建面向人工智能的信息架构。
IBM Cloud Pak for Data可以帮助企业收集位于本地环境、公有云、私有云等所有位置、所有形态的数据,并把数据存储在数据库和数据湖类型的环境中,进行混合数据管理。同时,通过数据虚拟化,企业无需数据迁移就能够对所需数据进行安全访问。
其中,IBM混合数据管理 Db2 解决方案支持任何类型的数据库或数据仓库、开源软件,可以帮助企业充分利用现有投资,随时随地灵活部署,并随数据架构的演变进行扩展。最新更新的Db2 11.5版本更是嵌入了人工智能及区块链等技术。
面对巨大的数据量,企业需要根据特定的规则和策略对数据进行组织和处理,而数据治理不是只做元数据管理+数据质量管理,更关键的是要建立数据资产目录。对此,IBM Cloud Pak for Data能够支持用户借助机器学习技术获得企业范围内的数据目录,轻松查找所需的数据,为下一步的分析做数据准备。
基于IBM Cloud Pak for Data在数据分析和数据融合层面的强大功能,企业可以分析所有数据信息,提取其中的价值,并嵌入到特定的业务场景或应用程序中。比如,用户可以借助数据科学功能,使用开源编程工具或可视界面构建预测模型,并且只需单击按钮就可以将这些模型部署到生产架构中,通过混合云场景创建强大的AI应用程序。
IBM Cloud Pak for Data有诸多关键应用场景,除了能够加速数据价值化,加快企业向合规性转型,同时还能帮助企业更快地部署及运营AI模型,提升业务成果。基于微服务架构,IBM Cloud Pak for Data还能提高企业架构敏捷性,缩短应用开发时间。
与此同时,IBM Cloud Pak for Data不仅允许不同类型的员工可以在平台上实现高效的协同,还通过创建开放的API架构,使得多组开发人员能够在上面直接进行应用构建。在整个数据或人工智能生命周期中始终维护团队协作、工作流和治理。
好文章,需要你的鼓励
科技亿万富翁拉里·埃里森资助的研究团队将向英国牛津大学投资1.18亿英镑,用于将AI技术应用于疫苗研究。牛津疫苗研究小组将领导这一项目,研究人体免疫系统对严重细菌感染和抗生素耐药性的反应。该项目由曾主导新冠疫苗试验的安德鲁·波拉德教授领导,计划采用人体挑战模型,让志愿者在受控条件下接触细菌,然后运用现代免疫学和AI工具来精确识别预测保护效果的免疫反应,以开发针对致命疾病的创新疫苗。
字节跳动团队开发了首个AI研究助手评估系统ReportBench,通过对比AI生成报告与专家综述论文的引用质量,并验证陈述准确性来评估AI助手表现。研究发现OpenAI Deep Research引用准确率38.5%,Gemini为14.5%,两者都存在陈述和引用幻觉问题。该系统为AI研究助手建立了标准化质量检测工具,推动行业发展。
据报道,ChatGPT开发商OpenAI计划在印度建设一座耗电量超过1吉瓦的数据中心,目前正寻找当地合作伙伴。该设施预计可容纳至少5.9万片英伟达B200芯片。这可能是OpenAI全球数据中心计划的一部分,旨在为国际用户提供更低延迟服务。OpenAI CEO奥特曼将于下月访问印度,公司还计划年底前在新德里开设办事处。
台湾大学研究团队开发了MovieCORE数据集,这是首个专门训练AI深度理解电影内容的创新工具。该数据集通过多AI智能体协作生成复杂问题,采用认知分类法测量思维深度,99.2%的问答需要高层次思维。研究还开发了ACE增强技术,可将AI性能提升25%。实验显示现有AI在深度视频理解方面仍存在显著不足,为未来AI发展指明了方向。