至顶网软件与服务频道消息: 对于企业而言,采用人工智能不仅仅涉及开发工具和算法。企业要部署人工智能,就必须首先培训工程师们如何使用人工智能技术,而今天AWS在re:Invent年度大会上首次发布的ML Embark,将致力于简化这项任务。
ML Embark是由AWS机器学习专家提供的一项员工培训服务。AWS机器学习解决方案实验室负责人Michelle Lee在博客中写道,该产品借鉴了母公司Amazon.com在组建内部人工智能团队时积累的经验教训。
其中之一,就是需要为那些接受新技术培训的员工提供明确的项目目标。ML Embark培训计划的开始是一项练习,要求参加该培训的企业技术和非技术人员展开协作,共同确定他们可以通过机器学习解决的业务问题。
从这一点开始,AWS提供了一系列现场培训课程,为员工提供实施想法所需的技能,采用了“以亚马逊机器学习大学为模型的课程,该课程在过去几年中不断改进,帮助亚马逊自己的开发人员精通于机器学习,”Lee这样写道。去年,亚马逊成立了机器学习大学(Machine Learning University),最初有30多种可选课程。
ML Embark计划中包含了一些任务,这些任务旨在为员工提供操练AI新技能的机会,例如有一个概念验证开发项目,参与者可以在该项目中开发机器学习应用,以及DeepRacer冠军赛。DeepRacer是一款自动驾驶汽车,可以帮助开发人员学习强化学习(一种新兴的机器学习技术)。
ML Embark利用DeepRacer冠军赛为契机,把人工智能推广到接受直接培训的员工之外的其他组织成员。Lee写道,该活动有助于“让更多员工通过友好竞争和亲身体验了解机器学习。”
ML Embark可能被证明是AWS专业服务产品组合的一个高附加值。AWS可以将ML Embark捆绑销售给那些采用AWS基于云的AI服务的新客户,也可以推销给那些希望增加精通神经网络开发的内部工程师数量的现有客户。
AWS的竞争对手也针对那些对机器学习感兴趣的开发者提供了类似的培训资源。微软推出了一个名为“Microsoft AI Scholl”计划,谷歌则提供了在线AI课程和其他学习工具。
好文章,需要你的鼓励
本文评测了六款控制台平铺终端复用器工具。GNU Screen作为老牌工具功能强大但操作复杂,Tmux更现代化但学习曲线陡峭,Byobu为前两者提供友好界面,Zellij用Rust编写界面简洁易用,DVTM追求极简主义,Twin提供类似TurboVision的文本界面环境。每款工具都有各自特点和适用场景。
韩国汉阳大学联合高通AI研究院开发出InfiniPot-V框架,解决了移动设备处理长视频时的内存限制问题。该技术通过时间冗余消除和语义重要性保留两种策略,将存储需求压缩至原来的12%,同时保持高准确性,让手机和AR眼镜也能实时理解超长视频内容。
网络安全公司Snyk宣布收购瑞士人工智能安全研究公司Invariant Labs,收购金额未公开。Invariant Labs从苏黎世联邦理工学院分拆成立,专注于帮助开发者构建安全可靠的AI代理工具和框架。该公司提供Explorer运行时观察仪表板、Gateway轻量级代理、Guardrails策略引擎等产品,并在工具中毒和模型上下文协议漏洞等新兴AI威胁防护方面处于领先地位。此次收购将推进Snyk保护下一代AI原生应用的使命。
纽约大学研究团队通过INT-ACT测试套件全面评估了当前先进的视觉-语言-动作机器人模型,发现了一个普遍存在的"意图-行动差距"问题:机器人能够正确理解任务和识别物体,但在实际动作执行时频频失败。研究还揭示了端到端训练会损害原有语言理解能力,以及多模态挑战下的推理脆弱性,为未来机器人技术发展提供了重要指导。