至顶网软件与服务频道消息: 对于企业而言,采用人工智能不仅仅涉及开发工具和算法。企业要部署人工智能,就必须首先培训工程师们如何使用人工智能技术,而今天AWS在re:Invent年度大会上首次发布的ML Embark,将致力于简化这项任务。
ML Embark是由AWS机器学习专家提供的一项员工培训服务。AWS机器学习解决方案实验室负责人Michelle Lee在博客中写道,该产品借鉴了母公司Amazon.com在组建内部人工智能团队时积累的经验教训。
其中之一,就是需要为那些接受新技术培训的员工提供明确的项目目标。ML Embark培训计划的开始是一项练习,要求参加该培训的企业技术和非技术人员展开协作,共同确定他们可以通过机器学习解决的业务问题。
从这一点开始,AWS提供了一系列现场培训课程,为员工提供实施想法所需的技能,采用了“以亚马逊机器学习大学为模型的课程,该课程在过去几年中不断改进,帮助亚马逊自己的开发人员精通于机器学习,”Lee这样写道。去年,亚马逊成立了机器学习大学(Machine Learning University),最初有30多种可选课程。
ML Embark计划中包含了一些任务,这些任务旨在为员工提供操练AI新技能的机会,例如有一个概念验证开发项目,参与者可以在该项目中开发机器学习应用,以及DeepRacer冠军赛。DeepRacer是一款自动驾驶汽车,可以帮助开发人员学习强化学习(一种新兴的机器学习技术)。
ML Embark利用DeepRacer冠军赛为契机,把人工智能推广到接受直接培训的员工之外的其他组织成员。Lee写道,该活动有助于“让更多员工通过友好竞争和亲身体验了解机器学习。”
ML Embark可能被证明是AWS专业服务产品组合的一个高附加值。AWS可以将ML Embark捆绑销售给那些采用AWS基于云的AI服务的新客户,也可以推销给那些希望增加精通神经网络开发的内部工程师数量的现有客户。
AWS的竞争对手也针对那些对机器学习感兴趣的开发者提供了类似的培训资源。微软推出了一个名为“Microsoft AI Scholl”计划,谷歌则提供了在线AI课程和其他学习工具。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。