至顶网软件与服务频道消息: Oracle今天发布了一款基于云的数据科学平台,新平台为企业提供了一个用于分析和人工智能项目的工具包。
Oracle首席执行官Safra Catz在伦敦举行的一个大会上公布了这个云数据科学平台,其中包含七个不同的服务和功能集,该套件的核心是Cloud Infrastructure Data Science虚拟工作台,它让工程师可以借助自动执行部分工作流程自动化的人工智能来构建机器学习模型。
自动化的工作环境
Cloud Infrastructure Data Science平台的首要任务是为不同项目选择合适的机器学习模型,它采用了多种算法,并且每种算法有多种配置,然后运行测试以找到最合适的算法。此外该平台还可以实现“特征工程”自动化,以确定AI在做决策时最应该考虑哪些数据点。
随附的模型评估工具让工程师能够检查神经网络是否符合预期。据Oracle称,该工具可以生成可视化效果,显示模型处理数据的效果。工程师还可以跟踪生产中的各项性能的变化,以发现预期外的波动。
Oracle数据和AI服务部门产品开发负责人Greg Pavlik表示,开发工作流的自动化是Oracle为该解决方案设定的两个主要优先之一,另一个是“提供强大的团队支持以实现协作,确保数据科学项目为企业带来真正的价值”。
为此,Oracle为该解决方案配备了很多协作功能,其中有一个仪表板可以显示模型在评估决策是每个数据点的权重是多少,这有助于工程师为利益相关者说明软件的透明度。此外还包括:一个目录,让团队成员可以通过该目录交换模型;共享的项目文件夹和安全控件,管理内容访问权限。
更丰富的AI功能
Cloud Data Science Platform还配置了其他几个组件,其中包括针对Oracle旗舰产品Autonomous Database的一组AI功能。
这个名为OML4Py的功能让企业可以在系统上直接运行机器学习模型,因此企业就可以在本地处理数据,而不必将数据迁移到单独的、专用的AI环境中。这可以节省带宽和管理员的时间。另一个名为OML4Py AutoML的功能可以针对企业正在处理的特定信息推荐最佳AI模型。
AI在Oracle产品路线图中扮演着越来越重要的战略角色。Oracle已经为Autonomous Database配备了AI功能来实现日常管理的自动化,这增加该系统对客户的吸引力,特别是当Oracle正面临着来自其他云计算厂商日益激烈的竞争。
今天Oracle还宣布推出了几项新的分析服务,其中包括:Data Flow,Spark的托管版本;Big Data Service,以云的方式实施Cloudera Hadoop;Cloud SQL服务,让分析师可以一次跨多个记录系统进行查询。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。