至顶网软件与服务频道消息: Oracle今天发布了一款基于云的数据科学平台,新平台为企业提供了一个用于分析和人工智能项目的工具包。
Oracle首席执行官Safra Catz在伦敦举行的一个大会上公布了这个云数据科学平台,其中包含七个不同的服务和功能集,该套件的核心是Cloud Infrastructure Data Science虚拟工作台,它让工程师可以借助自动执行部分工作流程自动化的人工智能来构建机器学习模型。
自动化的工作环境
Cloud Infrastructure Data Science平台的首要任务是为不同项目选择合适的机器学习模型,它采用了多种算法,并且每种算法有多种配置,然后运行测试以找到最合适的算法。此外该平台还可以实现“特征工程”自动化,以确定AI在做决策时最应该考虑哪些数据点。
随附的模型评估工具让工程师能够检查神经网络是否符合预期。据Oracle称,该工具可以生成可视化效果,显示模型处理数据的效果。工程师还可以跟踪生产中的各项性能的变化,以发现预期外的波动。
Oracle数据和AI服务部门产品开发负责人Greg Pavlik表示,开发工作流的自动化是Oracle为该解决方案设定的两个主要优先之一,另一个是“提供强大的团队支持以实现协作,确保数据科学项目为企业带来真正的价值”。
为此,Oracle为该解决方案配备了很多协作功能,其中有一个仪表板可以显示模型在评估决策是每个数据点的权重是多少,这有助于工程师为利益相关者说明软件的透明度。此外还包括:一个目录,让团队成员可以通过该目录交换模型;共享的项目文件夹和安全控件,管理内容访问权限。
更丰富的AI功能
Cloud Data Science Platform还配置了其他几个组件,其中包括针对Oracle旗舰产品Autonomous Database的一组AI功能。
这个名为OML4Py的功能让企业可以在系统上直接运行机器学习模型,因此企业就可以在本地处理数据,而不必将数据迁移到单独的、专用的AI环境中。这可以节省带宽和管理员的时间。另一个名为OML4Py AutoML的功能可以针对企业正在处理的特定信息推荐最佳AI模型。
AI在Oracle产品路线图中扮演着越来越重要的战略角色。Oracle已经为Autonomous Database配备了AI功能来实现日常管理的自动化,这增加该系统对客户的吸引力,特别是当Oracle正面临着来自其他云计算厂商日益激烈的竞争。
今天Oracle还宣布推出了几项新的分析服务,其中包括:Data Flow,Spark的托管版本;Big Data Service,以云的方式实施Cloudera Hadoop;Cloud SQL服务,让分析师可以一次跨多个记录系统进行查询。
好文章,需要你的鼓励
谷歌发布新的AI学术搜索工具Scholar Labs,旨在回答详细研究问题。该工具使用AI识别查询中的主要话题和关系,目前仅对部分登录用户开放。与传统学术搜索不同,Scholar Labs不依赖引用次数或期刊影响因子等传统指标来筛选研究质量,而是通过分析文档全文、发表位置、作者信息及引用频次来排序。科学界对这种忽略传统质量评估方式的新方法持谨慎态度,认为研究者仍需保持对文献质量的最终判断权。
武汉大学研究团队提出DITING网络小说翻译评估框架,首次系统评估大型语言模型在网络小说翻译方面的表现。该研究构建了六维评估体系和AgentEval多智能体评估方法,发现中国训练的模型在文化理解方面具有优势,DeepSeek-V3表现最佳。研究揭示了AI翻译在文化适应和创意表达方面的挑战,为未来发展指明方向。
Meta发布第三代SAM(分割一切模型)系列AI模型,专注于视觉智能而非语言处理。该模型擅长物体检测,能够精确识别图像和视频中的特定对象。SAM 3在海量图像视频数据集上训练,可通过点击或文本描述准确标识目标物体。Meta将其应用于Instagram编辑工具和Facebook市场功能改进。在野生动物保护方面,SAM 3与保护组织合作分析超万台摄像头捕获的动物视频,成功识别百余种物种,为生态研究提供重要技术支持。
参数实验室等机构联合发布的Dr.LLM技术,通过为大型语言模型配备智能路由器,让AI能根据问题复杂度动态选择计算路径。该系统仅用4000个训练样本和极少参数,就实现了准确率提升3.4%同时节省计算资源的突破,在多个任务上表现出色且具有强泛化能力,为AI效率优化开辟新方向。