AWS昨天分享了一些关于旗下咨询部门ML Solutions Lab(成立于2017年)人工智能业务增长的数据。ML Solutions Lab负责人、副总裁Michelle Lee在博客中透露,自2年前成立以来,ML Solutions Lab已经为175个客户完成了项目,覆盖零售、医疗、能源、公共事业、体育等领域。
Lee详细介绍说,自成立以来ML Solutions Lab的规模扩大了5倍多,一部分原因是开设了新的办事处。ML Solutions Lab最早是从北美开展业务的,现在已经扩展至在亚洲、欧洲和澳大利亚也设有分支机构。
Lee还分享了ML Solutions Lab在AWS最近公布的一些备受瞩目的企业交易中所扮演的角色。ML Solutions Labs正在服务于美国国家橄榄球联盟(National Football League),该联盟表示将在未来12月扩大和AWS的合作,构建一个球员受伤模拟系统。医疗技术公司Cerner最近指定AWS为首选的云提供商,并且在ML Solutions Lab的帮助下构建了一个用于预测心力衰竭的AI引擎。
NASA的Heliophysics实验室也是AI Solutions Lab的客户之一。Lee在博客中这样写道:“NASA的科学家与ML Solutions Lab和AWS Professional Service部门聚集在一起,致力于提高对太阳超级风暴进行预测和分类的能力。”
ML Solutions Lab的强劲增长也反映出咨询解决方案正在成为AWS赢得企业业务的战略中扮演越来越重要的角色。AI项目咨询越来越重要,因为很多传统公司都缺乏相关专业知识。而且,即使已经使用了AWS的企业组织,也不一定很熟悉SageMaker及其他AI产品。
AWS也一直在扩充自己的咨询产品以解决这一需求。ML Solutions Lab在去年12月推出了一个面向企业的AI培训计划,向咨询合作伙伴提供机器学习认证。
AWS将通过降低AI准入门槛的专业服务,让更多企业可以使用基于云的AI工具,反过来也扩大了潜在市场。据IDC预测,到2023年企业每年在人工智能解决方案上花费将达到1000亿美元。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。