AWS昨天分享了一些关于旗下咨询部门ML Solutions Lab(成立于2017年)人工智能业务增长的数据。ML Solutions Lab负责人、副总裁Michelle Lee在博客中透露,自2年前成立以来,ML Solutions Lab已经为175个客户完成了项目,覆盖零售、医疗、能源、公共事业、体育等领域。
Lee详细介绍说,自成立以来ML Solutions Lab的规模扩大了5倍多,一部分原因是开设了新的办事处。ML Solutions Lab最早是从北美开展业务的,现在已经扩展至在亚洲、欧洲和澳大利亚也设有分支机构。
Lee还分享了ML Solutions Lab在AWS最近公布的一些备受瞩目的企业交易中所扮演的角色。ML Solutions Labs正在服务于美国国家橄榄球联盟(National Football League),该联盟表示将在未来12月扩大和AWS的合作,构建一个球员受伤模拟系统。医疗技术公司Cerner最近指定AWS为首选的云提供商,并且在ML Solutions Lab的帮助下构建了一个用于预测心力衰竭的AI引擎。
NASA的Heliophysics实验室也是AI Solutions Lab的客户之一。Lee在博客中这样写道:“NASA的科学家与ML Solutions Lab和AWS Professional Service部门聚集在一起,致力于提高对太阳超级风暴进行预测和分类的能力。”
ML Solutions Lab的强劲增长也反映出咨询解决方案正在成为AWS赢得企业业务的战略中扮演越来越重要的角色。AI项目咨询越来越重要,因为很多传统公司都缺乏相关专业知识。而且,即使已经使用了AWS的企业组织,也不一定很熟悉SageMaker及其他AI产品。
AWS也一直在扩充自己的咨询产品以解决这一需求。ML Solutions Lab在去年12月推出了一个面向企业的AI培训计划,向咨询合作伙伴提供机器学习认证。
AWS将通过降低AI准入门槛的专业服务,让更多企业可以使用基于云的AI工具,反过来也扩大了潜在市场。据IDC预测,到2023年企业每年在人工智能解决方案上花费将达到1000亿美元。
好文章,需要你的鼓励
构建云边端协同的多元化算力体系已成为企业实现大模型规模化落地的关键路径,Arm正助力从云到端的大模型部署与高效运行,满足企业对更高性能、更高能效以及更强本地处理能力的迫切需求。
尽管市场上频繁出现所谓的自主代理 AI,但目前尚无统一定义,多数产品不过是 LLM 的简单包装,这让 CIO 在采购时面临风险与困惑。
最新研究发现,AI生成的代码常错误引用虚构依赖库,为供应链攻击提供契机,可能导致数据泄露、植入后门等恶意行为,严重威胁系统安全。
本文讨论了 IT 自动化过程中容易忽视的流程问题、数据质量、整合难题、成本误区以及 AI 融入后带来的监管与创新挑战。