至顶网软件与服务频道消息: 2017年谷歌的几位工程师和其他几位科技公司同行开源了Kubeflow。Kubeflow是一个工具包,让企业组织可以在基于容器编排框架Kubernetes的基础设施上部署AI工作负载。
Kubeflow 1.0版本引入了该软件几个核心组件,这些组件“定义的稳定性、可支持性和可升级性”都是符合企业用户需求的,也就是说,现在这个工具包作为一个整体可投入生产使用。
Kubeflow 1.0带来了内置管理控制台的稳定版本,其中包含关键功能的快捷方式。功能之一是Jupyter Notebook控制器,现在已经升级到稳定状态,可以让AI团队使用Jupyter Notebook开发工具创建新的机器学习模型。
该模型就绪之后,用户就可以使用TensorFlow或PyTorch对其进行训练。Kubeflow 1.0支持TFJob和PyTorch Operator,这两者让开发人员可以使用他们选择的框架和相对简单的脚本来设置AI训练工作流。
今天公布的版本还有一些面向管理员的功能,这些管理员主要管理开发者构建AI工作负载所使用的基础设施。此外还有kfctl,它可以在云环境中自动部署Kubeflow,以及可以在各个开发人员之间分配环境资源的控件。
谷歌开源策略师Thea Lamkin在博客文章中详细介绍称:“有了Kubeflow,每个数据科学家或者团队都可以得到一个命名空间,可以在其中运行工作负载。命名空间提供了安全性和资源隔离。平台管理员使用Kubernetes资源配额可以轻松限制个人或者团队消耗多少资源,以确保公平调度。”
Google Cloud工程师Jeremy Lewi和Abhishek Gupta在另一篇文章中写道,企业可以在谷歌Anthos应用平台上部署Kubeflow 1.0以获得这些新功能。展望未来,谷歌计划加强对AI工具包的支持。谷歌将允许企业在本地Anthos部署上设置Kubeflow,并与Google Cloud的网络安全功能进行更紧密的集成。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。