至顶网软件与服务频道消息: 谷歌今天宣布开源TensorFlow Quantum(TensorFlow的扩展),让开发者能够为量子计算机构建人工智能模型。
目前量子计算仍处于早期阶段,但该技术正在迅速发展成熟。IBM的量子芯片处理能力每年翻一番,Honeywell最近也推出了一套系统,预计在未来5年内将速度提升10万倍。
为了能够使用速度超快的量子计算机,研究人员不得不编写可以运行量子位的专有算法,与传统二进制不同的是,这种算法可以表示为1、0或两种状态兼有,而且需要专有的开发工具。
这时候就需要TensorFlow Quantum了。它提供了一组运算符,低等级编程构造块,用于创建可与量子位、量子逻辑门和量子电路配合使用的人工智能模型。这些运算符消除了一些潜在的复杂性,以减少研究人员需要编写的代码量。
谷歌研究人员Alan Ho和Masoud Mohseni在博客中这样写道:“TFQ允许研究人员在单个计算图形中将量子数据集、量子模型和经典控制参数构造为张量。”
TensorFlow Quantum的一种潜在应用是量子数据解释。因为量子位可以同时表示1和0,所以找出由量子处理器执行的计算结果本身就是一个巨大的挑战。根据Ho和Mohseni的说法,TensorFlow Quantum让工程师可以开发出能够自动解开量子数据的AI模型。
他们这样写道:“TFQ库为模型的开发提供了原语,这些模型解开并概括了量子数据中的相关性,为改进现有量子算法或者发现新的量子算法提供了机会。”
目前,TensorFlow Quantum仅限于在模拟量子计算机中使用,但谷歌计划进一步兼容真实的计算机。谷歌计划增加支持自主开发的Sycamore量子系统(去年公布)。
好文章,需要你的鼓励
山东大学等高校联合研究揭示智能手机AI助手隐私保护能力严重不足。研究团队构建了首个隐私意识评估基准SAPA-Bench,包含7138个真实场景。测试结果显示,即使最佳模型的隐私风险感知能力也仅达67%,多数开源模型仅30%左右。研究发现闭源模型表现优于开源模型,明确提示可显著提升隐私感知能力。
英国研究人员开发出一项名为Fastball的三分钟检测技术,通过脑电图头戴设备分析大脑对图像的识别能力,能够在认知衰退早期发现记忆问题。研究涉及107名参与者,发现该技术可有效识别轻度认知障碍患者的记忆缺陷,比现有诊断工具提前10-20年发现阿尔茨海默病征象。该技术可在家中使用,为早期干预治疗提供可能。
香港理工大学等机构研究团队发现扩散语言模型存在"早期答案收敛"现象:高达99%的问题在推理中途就已得出正确答案,却仍继续无效推理。基于此发现,团队开发了Prophet方法,通过监控AI推理信心动态决定提前停止时机,实现3.4倍推理加速且几乎不损失准确性,为AI文本生成效率优化开辟新方向。