至顶网软件与服务频道消息: 谷歌今天宣布开源TensorFlow Quantum(TensorFlow的扩展),让开发者能够为量子计算机构建人工智能模型。
目前量子计算仍处于早期阶段,但该技术正在迅速发展成熟。IBM的量子芯片处理能力每年翻一番,Honeywell最近也推出了一套系统,预计在未来5年内将速度提升10万倍。
为了能够使用速度超快的量子计算机,研究人员不得不编写可以运行量子位的专有算法,与传统二进制不同的是,这种算法可以表示为1、0或两种状态兼有,而且需要专有的开发工具。
这时候就需要TensorFlow Quantum了。它提供了一组运算符,低等级编程构造块,用于创建可与量子位、量子逻辑门和量子电路配合使用的人工智能模型。这些运算符消除了一些潜在的复杂性,以减少研究人员需要编写的代码量。
谷歌研究人员Alan Ho和Masoud Mohseni在博客中这样写道:“TFQ允许研究人员在单个计算图形中将量子数据集、量子模型和经典控制参数构造为张量。”
TensorFlow Quantum的一种潜在应用是量子数据解释。因为量子位可以同时表示1和0,所以找出由量子处理器执行的计算结果本身就是一个巨大的挑战。根据Ho和Mohseni的说法,TensorFlow Quantum让工程师可以开发出能够自动解开量子数据的AI模型。
他们这样写道:“TFQ库为模型的开发提供了原语,这些模型解开并概括了量子数据中的相关性,为改进现有量子算法或者发现新的量子算法提供了机会。”
目前,TensorFlow Quantum仅限于在模拟量子计算机中使用,但谷歌计划进一步兼容真实的计算机。谷歌计划增加支持自主开发的Sycamore量子系统(去年公布)。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。