疫情肆虐,全球多个科技领域盛会宣布改为线上举办,计算机领域顶会 ASPLOS也不例外。
日前,ASPLOS 2020公布了计算机界最新科技成果,其中包括阿里云提交的名为《High-density Multi-tenant Bare-metal Cloud》的论文,该论文阐述了阿里云自研的神龙服务器架构如何解决困扰云计算行业多年的虚拟化性能损耗问题,打破物理机的性能神话,让云服务器突破性能极限。此次入选意味着全球计算机顶会对阿里云自研技术的认可,也意味着中国创新技术在全球计算机界争得了一席之地。
ASPLOS 是综合体系结构、编程语言和操作系统三个方向的计算机系统领域顶级会议,从1982年创办至今推动了多项计算机系统技术的发展,一般论文录用率在20%左右。
阿里云本次入选的论文题为《High-density Multi-tenant Bare-metal Cloud》,由阿里云研究员张献涛带领的神龙技术团队撰写,详细解读了神龙架构的技术优势:超越传统物理机100%的算能、分钟级交付能力、安全物理隔离和云平台全系打通等。
虚拟化是云计算的基础,它将物理服务器虚拟化成想要的计算单元,进而拥有最大的弹性,然而却会导致性能损耗。如何解决这样的矛盾?阿里在2017年推出了“神龙架构”,弥补虚拟化的性能损耗,同时拥有云的弹性和运维优势。
2019年杭州云栖大会上,阿里云发布了第三代神龙架构,全面支持ECS虚拟机、裸金属、云原生容器等,在IOPS、PPS等方面提升5倍性能,可帮助用户降低50%的计算成本。去年双11核心系统100%上云,神龙大放异彩,成功扛住了54.4万笔/秒的订单创建峰值,与同配置物理机相比,不仅业务系统性能提升20%,而且抗高负载压力表现更好,整个业务性能非常平稳和线性。
不仅如此,神龙还是目前最流行的容器技术的最佳拍档。基于神龙架构的阿里云容器服务对比物理机有10%-30%的性能优势。
目前,神龙架构已大规模应用于淘宝、天猫、菜鸟等业务,用于解决高峰值的性能瓶颈问题。
好文章,需要你的鼓励
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AI虽具备变革企业洞察力的潜力,但成功依赖于数据质量。大多数AI项目失败源于数据混乱分散而非算法局限。谷歌BigQuery云数据AI平台打破数据孤岛,简化治理,加速企业AI应用。通过AI自动化数据处理,实现实时分析,并与Vertex AI深度集成,使企业能够高效处理结构化和非结构化数据,将智能商业转型从愿景变为现实。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。