至顶网软件与服务频道消息:人工智能(AI)正风靡全球。需要强调的是,AI已经成为当下既被严重夸大、又被严重低估的技术成果之一。之所以说夸大,是因为当下几乎任何企业都想把“AI”字眼加进自己的产品当中。(个人认为在披萨烤箱里加进「AI」非常荒唐。)而之所以说低估,是因为大多数行业并没有真正理解AI技术所能带来的下一场革命。
Neurala公司对此有着自己的看法,该公司认为,AI将给制造业领域的机器检查技术带来巨大改进。Neurala公司联合创始人兼CEO Massimiliano Versace表示,“AI技术所具备的视觉识别能力,有望给整个制造业创造巨大价值。AI将这种能够与人类决策水平比肩的能力带入生产线,实现远超常规机器视觉系统的识别准确度。”
Neurala是一家来自波士顿的技术初创企业,致力于将AI引入计算机视觉检查领域。该公司成立于2006年,通过四轮融资筹得1600万美元。最近的一次是2017年1月的A轮融资,由Pelion Venture Partners领投,融资额为1400万美元。Neurala公司目前拥有50名员工。
该公司在核心业务在于开发专有神经网络技术(即Lifelong-Deep神经网络,简称Lifelong-DNN),意在进一步提升计算机视觉的性能水平。Lifelong-DNN最初专为美国宇航局的自动行星探测机器人所设计,其模拟人类大脑的观察与学习方式。与计算机视觉相结合,该技术能够实现对系统的快速连续训练,借此准确发现并标记存在缺陷的产品。Lifelong-DNN本身属于Neurala公司Brain Builder AI平台的组成部分。
Versace解释道,“对于大多数现有应用而言,常规的计算机视觉方案已经能够发挥很好的效果,例如在光滑的表面上寻找划痕。但其作用本质仍存在严重的局限性,也就是在相同当中找出不同。而在大多数实际应用场景中,我们根本无法满足机器视觉提出的标准化要求。”
就Versace个人而言,他从25年前就开始从事AI技术研究,并与DARPA及美国宇航局一道开发机器人与无人机。他曾参与过石油与天然气行业中的无人机设备检查项目,这段经历,也让他下定决心投身于利用视觉技术实现对消费级产品及OEM生产的质量控制。他表示,“近年来,制造业一直在以种种有趣的方式使用AI技术。我们将见证越来越多实际应用的诞生,并迎接AI驱动型制造业的全面腾飞。”
Neurala公司的人工智能系统,可以利用产品图片,来学习目标产品的外观。对于这类具备大量关于合格产品的数据,而不良产品数据相对有限的使用专题来说,计算机视觉技术可以说再合适不过了。Versace指出,“常规制造业就是这样,并不会保存太多不良产品的信息。以制药领域为例,他们要求系统完美运行,一切与预期相左的状态都属于异常。这意味着我们可以利用少量图像建立起「质量良好」这一基准概念,并拒绝一切与之冲突的产品表现。相关识别模型只需要短短几分钟就能设置完成。”
AI系统最强大的一点,在于持续学习能力。Versace解释道,“如果系统认为某款产品合格,但操作人员给出不同意见,系统就能从中学习新的经验。它会意识到自己遗漏了某些关键信息,借此完善数据集,推动系统能力的进一步提升。”
IHI Corporation作为全球最大的飞机发动机、汽车与工业涡轮增压器以及其他运输相关设备制造商之一,目前也成为Neurala公司的客户。IHI物联网项目部总经理Yukihiro Kawano表示,“在检测准确度与处理速度方面,我们发现Neurala的Brain Builder AI平台要远远优于其他标准视觉检测系统。Brain Builder能够利用AI技术,从图像中准确检测出特定对象类别。这是生成注释数据的关键,并可被用于确保该平台准确检测生产线制造出来的任何对象。”
这种对异常问题的实时识别能力不仅能够节约下大量资金,防止存在质量问题的产品被交付到客户手中,同时也让操作人员得以立即着手纠正问题。因此,IHI希望将这套系统推向更广泛的应用场景。Kawano指出,“展望未来,我们希望利用Brain Builder改善其他工厂的制造流程,包括借此快速识别并检测其他生产线中更为多样的产品对象。”
Neurala公司的发展愿景也正在于此。Versace表示,“我们正在切实证明AI技术在改善制造能力、解决异常问题并节约成本方面的实际效果。我们一直以月作为规划周期单位,目前也已经开始与制造业领域的多家知名大企业开展合作。”
他还抱有更大的雄心壮志。他总结道,“着眼于宏观经济层面,机器人与AI技术将帮助制造业重返美国,同时让制造类工作岗位变得更具吸引力。我知道很多人担心自己的工作被AI彻底取代,但如今的年轻人们已经习惯了同技术打交道,而且愿意不断学习。AI技术在完善整个制造业流程的同时,也将让我们的工人拥有更强大、更高效的生产能力。”
好文章,需要你的鼓励
尽管AI实验广泛开展,但大多数AI项目缺乏成熟度无法规模化。93%的组织在使用或构建AI系统,但仅不到10%建立了强健的治理框架。研究显示,超过50%的AI实验从未投产,仅1%的项目实现真正变革性成果。缺乏数据和AI主权是关键障碍,而拥有主权的组织AI项目成功率提升2倍,回报率增长5倍。
香港中文大学等顶尖院校联合研究发现,当前最先进的AI视频生成技术已能制作出连顶级检测系统都无法识别的假视频。研究团队开发了Video Reality Test平台,测试结果显示最强生成模型Veo3.1-Fast的假视频仅有12.54%被识别,而最强检测系统Gemini 2.5-Pro准确率仅56%,远低于人类专家的81.25%。研究还发现检测系统过度依赖水印等表面特征,音频信息能提升检测准确性,但技术发展已对信息真实性判断带来严峻挑战。
企业正竞相释放AI的变革潜力,但真正的瓶颈不在技术而在人力准备度。Gartner研究显示,56%的CEO计划在未来五年削减管理层级,但91%的CIO未跟踪AI引发的技能变化。超过80%的领导者根本不衡量AI准确性。AI价值取决于员工适应和与智能机器共同发展的能力。CIO必须应对五个关键人力障碍:AI退出效应、中层管理困境、行为副产品、准确性悖论和影子AI现象,这些深层次的行为反射和组织动态如不解决将阻碍转型。
Google DeepMind团队提出了革命性的"扩散预览"模式,通过ConsistencySolver技术实现AI图像生成的"预览+精修"工作流程。该技术能在5-10步内生成高质量预览图像,与传统40步完整生成保持高度一致性,用户体验测试显示总体时间节省近50%,大大提高了创作效率和创意探索的自由度。