至顶网软件与服务频道消息:近日,斯坦福大学公布了最新的DAWNBench深度学习榜单,阿里云打破谷歌等企业创造的纪录,包揽图像识别比赛的四项第一,这也意味着阿里云可提供全球最快的AI计算服务。
斯坦福大学DAWNBench是人工智能领域最权威的竞赛之一,它是衡量深度学习优化策略、模型架构、软件框架、云和硬件等综合解决方案实力的标准之一。在图像识别(Image Classification on ImageNet)榜单中,阿里云包揽了训练时间、训练成本、推理延迟以及推理成本四项第一,打破了谷歌等企业保持一年多的纪录。
(阿里云包揽训练时间、训练成本、推理延迟以及推理成本四项第一)
DAWNBench官方显示,阿里云异构计算服务训练ImageNet 128万张图片仅需2分38秒,基于含光800的AI服务识别一张图片仅需0.0739ms,同时在训练成本和推理成本上也实现世界纪录的突破。
据悉,此次阿里云创造四项纪录得益于阿里云自研加速框架AIACC及平头哥含光800。AIACC是阿里云自主研发的飞天AI加速引擎,首次实现了统一加速Tensorflow、PyTorch、MxNet和Caffe等主流深度学习框架,在相同的硬件平台下,AIACC能够显著提升人工智能训练与推理的性能。
含光800是阿里巴巴第一颗自研芯片,也是全球性能最强的AI推理芯片,性能及能效比全球第一,基于含光800的AI云服务每秒可实现1600万亿次级别深度学习计算。
近年来,深度学习模型越来越复杂,所需的计算资源和计算时间也大幅增加,昂贵的AI算力制约了AI应用的落地,提升性能、降低成本成为企业的重中之重。
阿里云计算平台通过软硬件协同创新实现了性能上的大幅提升,目前相关AI计算服务已经在图像识别、语音识别、内容推荐、自动驾驶、自然语言理解等人工智能场景得到了大规模应用。以国内AI创业公司地平线为例,该公司采用阿里云AI计算服务进行深度学习训练,性能提升3倍,并显著降低训练成本。
据了解,阿里云已开源了基于AIACC加速引擎的AI解决方案,基于含光800的AI云服务也将对外开放。
好文章,需要你的鼓励
研究人员基于Meta前首席AI科学家Yann LeCun提出的联合嵌入预测架构,开发了名为JETS的自监督时间序列基础模型。该模型能够处理不规则的可穿戴设备数据,通过学习预测缺失数据的含义而非数据本身,成功检测多种疾病。在高血压检测中AUROC达86.8%,心房扑动检测达70.5%。研究显示即使只有15%的参与者有标注医疗记录,该模型仍能有效利用85%的未标注数据进行训练,为利用不完整健康数据提供了新思路。
西湖大学等机构联合发布TwinFlow技术,通过创新的"双轨道"设计实现AI图像生成的革命性突破。该技术让原本需要40-100步的图像生成过程缩短到仅需1步,速度提升100倍且质量几乎无损。TwinFlow采用自我对抗机制,无需额外辅助模型,成功应用于200亿参数超大模型,在GenEval等标准测试中表现卓越,为实时AI图像生成应用开辟了广阔前景。
AI云基础设施提供商Coreweave今年经历了起伏。3月份IPO未达预期,10月收购Core Scientific计划因股东反对而搁浅。CEO Michael Intrator为公司表现辩护,称正在创建云计算新商业模式。面对股价波动和高负债质疑,他表示这是颠覆性创新的必然过程。公司从加密货币挖矿转型为AI基础设施提供商,与微软、OpenAI等巨头合作。对于AI行业循环投资批评,Intrator认为这是应对供需剧变的合作方式。
中山大学等机构联合开发的RealGen框架成功解决了AI生成图像的"塑料感"问题。该技术通过"探测器奖励"机制,让AI在躲避图像检测器识别的过程中学会制作更逼真照片。实验显示,RealGen在逼真度评测中大幅领先现有模型,在与真实照片对比中胜率接近50%,为AI图像生成技术带来重要突破。