至顶网软件与服务频道消息:近日,斯坦福大学公布了最新的DAWNBench深度学习榜单,阿里云打破谷歌等企业创造的纪录,包揽图像识别比赛的四项第一,这也意味着阿里云可提供全球最快的AI计算服务。
斯坦福大学DAWNBench是人工智能领域最权威的竞赛之一,它是衡量深度学习优化策略、模型架构、软件框架、云和硬件等综合解决方案实力的标准之一。在图像识别(Image Classification on ImageNet)榜单中,阿里云包揽了训练时间、训练成本、推理延迟以及推理成本四项第一,打破了谷歌等企业保持一年多的纪录。
(阿里云包揽训练时间、训练成本、推理延迟以及推理成本四项第一)
DAWNBench官方显示,阿里云异构计算服务训练ImageNet 128万张图片仅需2分38秒,基于含光800的AI服务识别一张图片仅需0.0739ms,同时在训练成本和推理成本上也实现世界纪录的突破。
据悉,此次阿里云创造四项纪录得益于阿里云自研加速框架AIACC及平头哥含光800。AIACC是阿里云自主研发的飞天AI加速引擎,首次实现了统一加速Tensorflow、PyTorch、MxNet和Caffe等主流深度学习框架,在相同的硬件平台下,AIACC能够显著提升人工智能训练与推理的性能。
含光800是阿里巴巴第一颗自研芯片,也是全球性能最强的AI推理芯片,性能及能效比全球第一,基于含光800的AI云服务每秒可实现1600万亿次级别深度学习计算。
近年来,深度学习模型越来越复杂,所需的计算资源和计算时间也大幅增加,昂贵的AI算力制约了AI应用的落地,提升性能、降低成本成为企业的重中之重。
阿里云计算平台通过软硬件协同创新实现了性能上的大幅提升,目前相关AI计算服务已经在图像识别、语音识别、内容推荐、自动驾驶、自然语言理解等人工智能场景得到了大规模应用。以国内AI创业公司地平线为例,该公司采用阿里云AI计算服务进行深度学习训练,性能提升3倍,并显著降低训练成本。
据了解,阿里云已开源了基于AIACC加速引擎的AI解决方案,基于含光800的AI云服务也将对外开放。
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。