至顶网软件与服务频道消息:近日,人工智能国际顶会ICML 2020公布了论文收录结果,阿里巴巴7篇论文入选,是入选论文数量最多的中国科技公司。ICML是机器学习领域全球最具影响力的学术会议之一,今年接受率仅为21.8%。
根据ICML官方显示,阿里7篇论文涵盖在图像识别、自然语言处理、搜索推荐等领域的研究成果,其中一篇《Boosting Deep Neural Network Efficiency with Dual-Module Inference》,提出了一种全新的AI推理方法,可大幅减少AI对计算和内存资源的消耗,能将推理速度提升3倍。
近年来AI模型变得越来越复杂化,尤其是类似语言AI这类复杂模型,给计算、内存资源带来了新的挑战。目前,业界通用的解决方法是采用更先进的计算性能来运行AI任务,例如采用GPU、FPGA或者NPU等异构计算,但该方法并没有从根源上解决问题。
阿里巴巴达摩院设计出了一种“AI双脑思考”的方法,能让大型神经网络像人类一样学会“快思考”与“慢思考”,从而进行高效且准确的推理过程。
该方法被称为“双模推理”, 即将一个复杂任务拆分成两个任务,例如在复杂AI推理任务过程中,可以先以很小的资源运行“小网络”,同时分析哪些网络的区域较为敏感,然后只对敏感区域在“大网络”中运行计算。
达摩院的科学家从理论上证明了双模推理的可行性,且在CPU上实现了该方法。实际效果显示,该方法能在保证模型精度的基础上,在语言模型上减小40%的访存,达到1.54倍-1.75倍的性能提升,同时可以在仅损耗0.5%精度基础上,提升3倍的推理速度。
近年来,阿里在AI领域迎来了基础研究与产业应用成果双爆发的阶段。三年前,阿里巴巴成立了内部研究机构达摩院,深入AI研究前沿。据了解,阿里AI已在国际顶级技术赛事上获得了近60项世界第一,500多篇论文入选国际顶会。同时,阿里AI落地了多项重大研究成果,全面赋能各行各业。达摩院医疗AI团队疫情期间研发的AI诊断技术,已在全球近600家医院落地,完成50余万例临床诊断。
好文章,需要你的鼓励
谷歌深度思维团队开发出名为MolGen的AI系统,能够像经验丰富的化学家一样自主设计全新药物分子。该系统通过学习1000万种化合物数据,在阿尔茨海默病等疾病的药物设计中表现出色,实际合成测试成功率达90%,远超传统方法。这项技术有望将药物研发周期从10-15年缩短至5-8年,成本降低一半,为患者更快获得新药治疗带来希望。
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
哈佛医学院和微软公司合作开发了一个能够"听声识病"的AI系统,仅通过分析语音就能预测健康状况,准确率高达92%。该系统基于深度学习技术,能够捕捉声音中与疾病相关的微妙变化,并具备跨语言诊断能力。研究团队已开发出智能手机应用原型,用户只需完成简单语音任务即可获得健康评估,为个性化健康管理开辟了新途径。