近几年来,AI与企业的业务场景正在越走越近。它不再只是和高手下棋、陪老人聊天、为客户服务,如今的AI,既可以“上天”和宇航员一起探索外太空,还可以“入地”协助油气工人探测地质能源,既可以“搞科研”成为科学家们的“信息大脑”,也可以“下车间”成为产线上的“超级作业者”……
场景越丰富,业务越复杂,就意味着,定制化需求越高。比如,物流场景下的自动分拣和科研场景下的生物识别显然就不能用同一个AI模型来实现。因此,面向不同的行业和场景,常常需要对AI模型进行大量的定制开发。对企业来说,这不仅耗时,而且对开发人员的技术能力和业务经验也提出了相当高的要求。
另一方面,AI模型效果的提升来自于数据的“喂养”,数据规模和数据质量是AI结果可靠性的前提和基础,而数据的标注和预处理往往需要较高的成本和较长的时间。这使得很多企业在推动业务智能化创新时,常常面临着数据管理成本高昂、数据处理流程低效的问题。
基于此,百度大脑在2017年底,面向企业开发者推出了零门槛AI开发平台——EasyDL,一站式支持EasyData智能数据服务、模型训练、服务部署等全流程功能,内置丰富的预训练模型,支持图像分类、物体检测、图像分割、文本分类、情感倾向分析、序列化标注、音视频分类等多类模型,支持公有云/私有化/设备端等灵活部署方式。EasyDL面向不同人群提供经典版、专业版、行业版三种产品形态,已在工业、零售、制造、医疗等领域广泛落地。
简单来说,用户借助EasyDL,可以自行定制一个高精度的AI模型,而低门槛的训练模型的交互流程可以让企业更高效地获取高质量的定制AI能力。
那么,EasyDL为什么可以这么“香”?如何做到零门槛开发和一站式数据服务?又有哪些经典场景案例呢?8月12日下午15:00,来《百度智能云技术创新沙龙 | 百度智能云EasyDL 零门槛定制高精度AI模型》直播现场,与百度AI技术生态部高级产品经理李景秋一起认识EasyDL,深入了解EasyDL如何帮助企业从数据采集、清洗、标注到模型开发、训练、部署,加速释放AI价值,推动智能化创新。
好文章,需要你的鼓励
YouTube在年度Made on YouTube活动中发布多项更新,包括Studio新增"相似度"检测和唇同步配音功能,YouTube Live支持迷你游戏和双格式同步直播,Shorts集成Veo 3 AI视频生成模型。此外还推出播客AI剪辑工具、新的货币化选项如品牌合作和购物标签功能,以及YouTube Music的粉丝互动新特性。
Orange Research团队开发的DivMerge技术实现了AI模型合并的重大突破,通过基于信息论的Jensen-Shannon散度优化,能够将多个专门模型智能组合成保持各自专长的"超级模型"。该技术在双任务合并中达到99.18%性能保持率,显著优于传统88.48%的水平,且在多任务场景下展现更好扩展性,仅需25个样本即可有效工作,为AI应用降本增效提供了新路径。
英国政府与美国数据分析公司Palantir达成国防合作协议,该公司将投资15亿英镑并在英国设立欧洲国防总部,创造350个就业岗位。双方将合作开发AI驱动的军事决策和目标定位系统,这些技术已在乌克兰得到测试。该协议是英国战略防务评估的重要组成部分,旨在提升军事规划和目标选择能力。此次合作是美国科技巨头对英国310亿英镑投资承诺的一部分。
腾讯AI实验室联合多所知名高校开发了一种名为CDE的新型AI训练框架,通过模仿儿童的好奇心学习机制,让大语言模型能够自主探索未知领域。该方法使用两套"好奇心传感器"指导模型学习,在数学推理任务上平均提升3个百分点,同时解决了传统方法中的"校准崩塌"问题,为开发更智能自主的AI系统开辟了新路径。