近几年来,AI与企业的业务场景正在越走越近。它不再只是和高手下棋、陪老人聊天、为客户服务,如今的AI,既可以“上天”和宇航员一起探索外太空,还可以“入地”协助油气工人探测地质能源,既可以“搞科研”成为科学家们的“信息大脑”,也可以“下车间”成为产线上的“超级作业者”……
场景越丰富,业务越复杂,就意味着,定制化需求越高。比如,物流场景下的自动分拣和科研场景下的生物识别显然就不能用同一个AI模型来实现。因此,面向不同的行业和场景,常常需要对AI模型进行大量的定制开发。对企业来说,这不仅耗时,而且对开发人员的技术能力和业务经验也提出了相当高的要求。
另一方面,AI模型效果的提升来自于数据的“喂养”,数据规模和数据质量是AI结果可靠性的前提和基础,而数据的标注和预处理往往需要较高的成本和较长的时间。这使得很多企业在推动业务智能化创新时,常常面临着数据管理成本高昂、数据处理流程低效的问题。
基于此,百度大脑在2017年底,面向企业开发者推出了零门槛AI开发平台——EasyDL,一站式支持EasyData智能数据服务、模型训练、服务部署等全流程功能,内置丰富的预训练模型,支持图像分类、物体检测、图像分割、文本分类、情感倾向分析、序列化标注、音视频分类等多类模型,支持公有云/私有化/设备端等灵活部署方式。EasyDL面向不同人群提供经典版、专业版、行业版三种产品形态,已在工业、零售、制造、医疗等领域广泛落地。
简单来说,用户借助EasyDL,可以自行定制一个高精度的AI模型,而低门槛的训练模型的交互流程可以让企业更高效地获取高质量的定制AI能力。
那么,EasyDL为什么可以这么“香”?如何做到零门槛开发和一站式数据服务?又有哪些经典场景案例呢?8月12日下午15:00,来《百度智能云技术创新沙龙 | 百度智能云EasyDL 零门槛定制高精度AI模型》直播现场,与百度AI技术生态部高级产品经理李景秋一起认识EasyDL,深入了解EasyDL如何帮助企业从数据采集、清洗、标注到模型开发、训练、部署,加速释放AI价值,推动智能化创新。
好文章,需要你的鼓励
zip2zip是一项创新技术,通过引入动态自适应词汇表,让大语言模型在推理时能够自动组合常用词组,显著提高处理效率。由EPFL等机构研究团队开发的这一方法,基于LZW压缩算法,允许模型即时创建和使用"超级tokens",将输入和输出序列长度减少20-60%,大幅提升推理速度。实验表明,现有模型只需10个GPU小时的微调即可适配此框架,在保持基本性能的同时显著降低计算成本和响应时间,特别适用于专业领域和多语言场景。
这项研究创新性地利用大语言模型(LLM)代替人类标注者,创建了PARADEHATE数据集,用于仇恨言论的无毒化转换。研究团队首先验证LLM在无毒化任务中表现可与人类媲美,随后构建了包含8000多对仇恨/非仇恨文本的平行数据集。评估显示,在PARADEHATE上微调的模型如BART在风格准确性、内容保留和流畅性方面表现优异,证明LLM生成的数据可作为人工标注的高效替代方案,为创建更安全、更具包容性的在线环境提供了新途径。
这项研究由中国科学技术大学的研究团队提出了Pro3D-Editor,一种新型3D编辑框架,通过"渐进式视角"范式解决了现有3D编辑方法中的视角不一致问题。传统方法要么随机选择视角迭代编辑,要么同时编辑多个固定视角,都忽视了不同编辑任务对应不同的"编辑显著性视角"。Pro3D-Editor包含三个核心模块:主视角采样器自动选择最适合编辑的视角,关键视角渲染器通过创新的MoVE-LoRA技术将编辑信息传递到其他视角,全视角精修器修复并优化最终3D模型。实验证明该方法在编辑质量和准确性方面显著优于现有技术。
这项研究提出了ComposeAnything,一个无需重新训练的框架,可显著提升AI图像生成模型处理复杂空间关系的能力。该技术由INRIA、巴黎高师和CNRS的研究团队开发,通过三个创新步骤工作:首先利用大型语言模型创建包含深度信息的2.5D语义布局,然后生成粗略的场景合成图作为先验指导,最后通过物体先验强化和空间控制去噪引导扩散过程。在T2I-CompBench和NSR-1K基准测试中,该方法远超现有技术,特别是在处理复杂空间关系和多物体场景时表现卓越,为AI辅助创意设计开辟新可能。