大数据厂商Cloudera今天发布了第二季度财报,尽管业绩超出了华尔街的预期,但是强劲的表现还不足以阻止其股价在盘后交易中小幅下跌。
Cloudera主要面向企业销售数据工程、数据仓库、机器学习和分析软件。该季度Cloudera在未计入股票补偿等特定成本的利润为每股10美分,收入为2.143亿美元,比去年同期增长9%,此前华尔街预期的每股利润为7美分,收入为2.0814亿美元。
Cloudera表示,该季度新冠病毒大流行导致IT支出的疲软被市场对Cloudera数据平台的需求所抵消了。
该季度Cloudera的年度经常性收入为7.39亿美元,比去年同期增长12%,而这对投资者来说是一项重要指标,因为年度经常性收入代表了公司的发展状况,并可以预测未来的增长。
Cloudera称目前公司有1007家贡献10万美元年度经常性收入的客户,172家贡献超过100万美元年度经常性收入的客户。
Cloudera首席执行官Rob Bearden在与分析师的电话会议上表示,该季度Cloudera的Cloudera Data Platform Public Cloud客户数量翻了一番,预订量同样非常强劲。
他说:“尽管目前已确定的收入不算高,但CDP Public Cloud在市场中备受欢迎让我们感到鼓舞。这些产品作为独立的服务体现出差异化,将会随着时间的推移进行扩展。CDP Public Cloud直接战略价值主要在体现在它支持混合数据架构,将在为客户创建企业数据云方面发挥至关重要的作用。”
Bearden表示,Cloudera Data Platform Private Cloud产品也有突出表现,使得Cloudera能够更好地进入混合云和多云市场。他在电话会议上向分析师表示,CDP Private Cloud有助于加强Cloudera与AWS、Google和微软等公有云基础设施巨头之间的关系。”
“我们希望现有客户群采用我们的企业数据云,以推动公有云基础设施即服务方面的消费,而且CDP Private Cloud推动了我们与AWS、Azure和Google的公有云合作伙伴关系。我们估计,我们每赚1美元的软件收入,这些云提供商就会给我们贡献4至5美元的计算和存储收入,这部分IaaS潜在收入,是这些超大规模云合作伙伴关注的重点,同时也促进了我们与这些云合作伙伴之间的互动。”
Constellation Research分析师Holger Mueller表示,CDP Private Cloud的表现令人感到鼓舞,因为它可以帮助Cloudera抓住下一代云计算平台把云堆栈带入本地环境的发展趋势。
Mueller说:“在财务方面,很高兴看到Cloudera在财务方面进一步克服了挑战,很有可能在下个季度实现盈利。”
Pund-IT分析师Charles King认为,客户正在积极地向云转型,他们需要来自专家的建议和帮助,这会让Cloudera从中受益。
“Bearden关于Cloudera正在加强与AWS、微软Azure和Google Cloud等主要合作伙伴关系的战略是有道理的,因为像Cloudera这样的云软件厂商在经济体量上几乎不可能和这些云服务提供商一样。也就是说,Cloudera的表现超出分析师的预期,这体现了Cloudera扎实的管理和执行力,预示着Cloudera将在后疫情时代的市场中继续保持稳定表现。”
Cloudera预计,第三季度调整后的每股收益为8至10美分,收入在2.07亿至2.1亿美元之间,华尔街预期的每股收益为7美分,收入为2.055亿美元。
Cloudera预计全年收入在8.39亿美元至8.53亿美元之间,此前华尔街预期的全年收入为8.387亿美元。Cloudera表示,这一全年展望的假设前提是COVID-19所带来的“衰退影响”将持续到第四季度。
Bearden说:“我们不能幸免于COVID-19造成的经济衰退,但是我们认为,我们的业务比大多数企业软件公司更具弹性。这是事实,因为我们的产品支持数字化转型计划和关键任务场景。”
Cloudera的股价在盘后交易中下跌超过2%。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。