大数据厂商Cloudera今天发布了第二季度财报,尽管业绩超出了华尔街的预期,但是强劲的表现还不足以阻止其股价在盘后交易中小幅下跌。
Cloudera主要面向企业销售数据工程、数据仓库、机器学习和分析软件。该季度Cloudera在未计入股票补偿等特定成本的利润为每股10美分,收入为2.143亿美元,比去年同期增长9%,此前华尔街预期的每股利润为7美分,收入为2.0814亿美元。
Cloudera表示,该季度新冠病毒大流行导致IT支出的疲软被市场对Cloudera数据平台的需求所抵消了。
该季度Cloudera的年度经常性收入为7.39亿美元,比去年同期增长12%,而这对投资者来说是一项重要指标,因为年度经常性收入代表了公司的发展状况,并可以预测未来的增长。
Cloudera称目前公司有1007家贡献10万美元年度经常性收入的客户,172家贡献超过100万美元年度经常性收入的客户。
Cloudera首席执行官Rob Bearden在与分析师的电话会议上表示,该季度Cloudera的Cloudera Data Platform Public Cloud客户数量翻了一番,预订量同样非常强劲。
他说:“尽管目前已确定的收入不算高,但CDP Public Cloud在市场中备受欢迎让我们感到鼓舞。这些产品作为独立的服务体现出差异化,将会随着时间的推移进行扩展。CDP Public Cloud直接战略价值主要在体现在它支持混合数据架构,将在为客户创建企业数据云方面发挥至关重要的作用。”
Bearden表示,Cloudera Data Platform Private Cloud产品也有突出表现,使得Cloudera能够更好地进入混合云和多云市场。他在电话会议上向分析师表示,CDP Private Cloud有助于加强Cloudera与AWS、Google和微软等公有云基础设施巨头之间的关系。”
“我们希望现有客户群采用我们的企业数据云,以推动公有云基础设施即服务方面的消费,而且CDP Private Cloud推动了我们与AWS、Azure和Google的公有云合作伙伴关系。我们估计,我们每赚1美元的软件收入,这些云提供商就会给我们贡献4至5美元的计算和存储收入,这部分IaaS潜在收入,是这些超大规模云合作伙伴关注的重点,同时也促进了我们与这些云合作伙伴之间的互动。”
Constellation Research分析师Holger Mueller表示,CDP Private Cloud的表现令人感到鼓舞,因为它可以帮助Cloudera抓住下一代云计算平台把云堆栈带入本地环境的发展趋势。
Mueller说:“在财务方面,很高兴看到Cloudera在财务方面进一步克服了挑战,很有可能在下个季度实现盈利。”
Pund-IT分析师Charles King认为,客户正在积极地向云转型,他们需要来自专家的建议和帮助,这会让Cloudera从中受益。
“Bearden关于Cloudera正在加强与AWS、微软Azure和Google Cloud等主要合作伙伴关系的战略是有道理的,因为像Cloudera这样的云软件厂商在经济体量上几乎不可能和这些云服务提供商一样。也就是说,Cloudera的表现超出分析师的预期,这体现了Cloudera扎实的管理和执行力,预示着Cloudera将在后疫情时代的市场中继续保持稳定表现。”
Cloudera预计,第三季度调整后的每股收益为8至10美分,收入在2.07亿至2.1亿美元之间,华尔街预期的每股收益为7美分,收入为2.055亿美元。
Cloudera预计全年收入在8.39亿美元至8.53亿美元之间,此前华尔街预期的全年收入为8.387亿美元。Cloudera表示,这一全年展望的假设前提是COVID-19所带来的“衰退影响”将持续到第四季度。
Bearden说:“我们不能幸免于COVID-19造成的经济衰退,但是我们认为,我们的业务比大多数企业软件公司更具弹性。这是事实,因为我们的产品支持数字化转型计划和关键任务场景。”
Cloudera的股价在盘后交易中下跌超过2%。
好文章,需要你的鼓励
CPU架构讨论常聚焦于不同指令集的竞争,但实际上在单一系统中使用多种CPU架构已成常态。x86、Arm和RISC-V各有优劣,AI技术的兴起更推动了对性能功耗比的极致需求。当前x86仍主导PC和服务器市场,Arm凭借庞大生态系统在移动和嵌入式领域领先,RISC-V作为开源架构展现巨大潜力。未来芯片设计将更多采用异构计算,多种架构协同工作成为趋势。
KAIST AI团队通过深入分析视频生成AI的内部机制,发现了负责交互理解的关键层,并开发出MATRIX框架来专门优化这些层。该技术通过语义定位对齐和语义传播对齐两个组件,显著提升了AI对"谁对谁做了什么"的理解能力,在交互准确性上提升约30%,为AI视频生成的实用化应用奠定了重要基础。
Vast Data与云计算公司CoreWeave签署了价值11.7亿美元的多年期软件许可协议,这标志着AI基础设施存储市场的重要转折点。该协议涵盖Vast Data的通用存储层及高级数据平台服务,将帮助CoreWeave提供更全面的AI服务。业内专家认为,随着AI集群规模不断扩大,存储系统在AI基础设施中的占比可能从目前的1.9%提升至3-5%,未来五年全球AI存储市场规模将达到900亿至2000亿美元。
乔治亚理工学院和微软研究团队提出了NorMuon优化器,通过结合Muon的正交化技术与神经元级自适应学习率,在1.1B参数模型上实现了21.74%的训练效率提升。该方法同时保持了Muon的内存优势,相比Adam节省约50%内存使用量,并开发了高效的FSDP2分布式实现,为大规模AI模型训练提供了实用的优化方案。