如今,越来越多的企业正在进行数字化转型,这意味着,企业的线上线下的业务数据会被收集、处理、存储,而经过数据分析,对应的结果又会被反馈回具体的业务,为企业产品调整、商业模式转变以及管理方式变革提供参考。
这意味着,企业的线上线下业务会将进一步被打通,而大数据在这个过程中将充分发挥出它的技术优势,实现对企业未来产品、未来技术、未来发展方向的数字化预判,帮助企业重塑在市场中的核心竞争力。
那么,企业如何把分散于各个地方的数据收集起来,同时释放数据的最大价值,让自己在这场数字化大潮中立于不败之地呢?这就需要一个可以将云、边、端所有业务融合成一体的一体化平台。
很明显,专注于企业内部业务应用的数据中心或私有云无法全面满足这一需求的。然而,可以满足海量用户业务应用的公有云在隐私和数据保护方面又很难取得企业信任。于是,能够兼有两者优势的混合云架构开始受到越来越多企业的重视。
但是,新的问题是,企业业务在混合云上的部署,也并非是一件一帆风顺的事情。企业上云,需要如何“掌舵”?灵活开放的云平台应当如何去进行构建?跨云业务又将如何协同,才能让业务管理更加高效?当前,很多企业对混合云还存在着很多的疑问。
为此至顶网总结了有关混合云的相关问题,推出《混合云100问》专题,从决策、部署、运营、开发四个维度为大家全面阐释了何为混合云,以及企业如何更好地搭建混合云。希望借此帮助企业更好地理解混合云、部署混合云、用好混合云,为企业现代化应用部署和管理提供参考、打好基础。
>>> 戳专题链接,立即查阅完整版百问内容:http://www.zhiding.cn/special/IBM_hybrid_cloud_2020
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
加拿大女王大学研究团队首次对开源AI生态系统进行端到端许可证合规审计,发现35.5%的AI模型在集成到应用时存在许可证违规。他们开发的LicenseRec系统能自动检测冲突并修复86.4%的违规问题,揭示了AI供应链中系统性的"许可证漂移"现象及其法律风险。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
这项由剑桥大学、清华大学和伊利诺伊大学合作的研究首次将扩散大语言模型引入语音识别领域,开发出Whisper-LLaDA系统。该系统具备双向理解能力,能够同时考虑语音的前后文信息,在LibriSpeech数据集上实现了12.3%的错误率相对改进,同时在大多数配置下提供了更快的推理速度,为语音识别技术开辟了新的发展方向。