信息技术监控和分析厂商Splunk今天宣布计划收购Flowmill,这家位于美国加州帕洛阿尔托的初创公司,提供的软件平台可以帮助企业更好地了解其网络。
这次收购预计将在2021年1月31日完成,交易条款未对外公布。
在大型云和本地环境中,排除网络故障往往是一件很棘手的事情,因为很难将数据流量与生成流量的系统相匹配。Flowmill的监控平台让流量来源查找变得更为容易一些,帮助IT团队更快地解决问题。
该平台在后台采用给了一种名为eBPF的Linux内核组件,将数据包与系统和应用进行匹配(Linux是目前企业IT环境中使用最广泛的操作系统)。反过来,该平台的eBPF组件可以将代码直接部署到操作系统内核中,收集有关上层应用的低层级活动数据,并通过这些低数据确定是哪些特定工作负载导致了网络故障的发生。
加速故障排除的技术能力并非Splunk收购Flowmill的唯一原因。Flowmill让企业可以部署Flowmill平台而无需修改他们想要监控的应用或网络,从而避免了传统工具各种耗时的要求。而且Flowmill表示,其平台可以用于降低公有云的网络成本,因为它可以更容易识别那些占用大量带宽的应用。
Splunk计划把Flowmill的技术整合到自己的Observability Suite产品包中,用于监控基础设施和应用。这次收购将帮助Splunk向其功能集中增加基于eBPF的监控功能,而这正是眼下竞争对手和风投方越来越关注的一个领域。就在上个月,一家名为Pixie Labs的初创公司走出隐身模式,凭借一个基于eBPF的Kubernetes环境监控平台获得了915万美元的资金。
此次收购Flowmill只是Splunk最近一系列初创企业战略性收购中的最新一笔。上个月,Splunk收购了应用监控公司Plumbr和网站性能优化专业公司Rigor,将自身技术能力扩展到这两家初创公司所在的领域。
好文章,需要你的鼓励
IDC数据显示,Arm架构服务器出货量预计2025年将增长70%,但仅占全球总出货量的21.1%,远低于Arm公司年底达到50%市场份额的目标。大规模机架配置系统如英伟达DGX GB200 NVL72等AI处理设备推动了Arm服务器需求。2025年第一季度全球服务器市场达到创纪录的952亿美元,同比增长134.1%。IDC将全年预测上调至3660亿美元,增长44.6%。配备GPU的AI服务器预计增长46.7%,占市场价值近半。
斯坦福与哈佛研究团队通过创新的"层次贝叶斯框架",首次从理性分析角度解释了AI学习策略转换机制。研究发现AI会在"记忆型"和"理解型"两种策略间理性选择,转换规律遵循损失-复杂度权衡原理。该理论框架仅用三个参数就能准确预测AI在不同条件下的行为表现,为AI系统的可控性和可预测性提供了重要理论基础。
AI正在重塑创业公司的构建方式,这是自云计算出现以来最重大的变革。January Ventures联合创始人Jennifer Neundorfer将在TechCrunch All Stage活动中分享AI时代的新规则,涵盖从创意验证、产品开发到团队架构和市场策略的各个方面。作为专注于B2B早期投资的风投合伙人,她将为各阶段创业者提供关键洞察。
这项研究汇集了来自斯坦福大学、苏黎世联邦理工学院、隆德大学、加州大学旧金山分校等多所世界顶尖学府的11位医学专家,共同构建了医学AI领域的首个多模态情境学习评估标准。