信息技术监控和分析厂商Splunk今天宣布计划收购Flowmill,这家位于美国加州帕洛阿尔托的初创公司,提供的软件平台可以帮助企业更好地了解其网络。
这次收购预计将在2021年1月31日完成,交易条款未对外公布。
在大型云和本地环境中,排除网络故障往往是一件很棘手的事情,因为很难将数据流量与生成流量的系统相匹配。Flowmill的监控平台让流量来源查找变得更为容易一些,帮助IT团队更快地解决问题。
该平台在后台采用给了一种名为eBPF的Linux内核组件,将数据包与系统和应用进行匹配(Linux是目前企业IT环境中使用最广泛的操作系统)。反过来,该平台的eBPF组件可以将代码直接部署到操作系统内核中,收集有关上层应用的低层级活动数据,并通过这些低数据确定是哪些特定工作负载导致了网络故障的发生。
加速故障排除的技术能力并非Splunk收购Flowmill的唯一原因。Flowmill让企业可以部署Flowmill平台而无需修改他们想要监控的应用或网络,从而避免了传统工具各种耗时的要求。而且Flowmill表示,其平台可以用于降低公有云的网络成本,因为它可以更容易识别那些占用大量带宽的应用。
Splunk计划把Flowmill的技术整合到自己的Observability Suite产品包中,用于监控基础设施和应用。这次收购将帮助Splunk向其功能集中增加基于eBPF的监控功能,而这正是眼下竞争对手和风投方越来越关注的一个领域。就在上个月,一家名为Pixie Labs的初创公司走出隐身模式,凭借一个基于eBPF的Kubernetes环境监控平台获得了915万美元的资金。
此次收购Flowmill只是Splunk最近一系列初创企业战略性收购中的最新一笔。上个月,Splunk收购了应用监控公司Plumbr和网站性能优化专业公司Rigor,将自身技术能力扩展到这两家初创公司所在的领域。
好文章,需要你的鼓励
Snap 推出 Lens Studio 的 iOS 应用和网页工具,让所有技能层次的用户都能通过文字提示和简单编辑,轻松创建 AR 镜头,包括生成 AI 效果和集成 Bitmoji,从而普及 AR 创作,并持续为专业应用提供支持。
这项研究由香港理工大学和新加坡国立大学的团队共同完成,提出了R?ec,首个将推理能力内置于大型推荐模型的统一框架。与传统方法不同,R?ec在单一自回归过程中实现了推理生成和物品预测的无缝整合。研究者还设计了RecPO优化框架,无需人工标注即可同时提升模型的推理和推荐能力。实验结果显示,R?ec在三个数据集上显著超越现有方法,在Hit@5和NDCG@20指标上分别提升68.67%和45.21%。这一突破为下一代智能推荐系统开辟了新方向。
这项研究提出了CURE框架,通过强化学习让大语言模型同时学习编写代码和生成单元测试两种能力,无需使用标准代码作为监督。团队开发的ReasonFlux-Coder模型在仅用4.5K编程问题训练后,便在多个基准测试中超越了同类模型,代码生成准确率提高5.3%,最佳N选1准确率提高9.0%。该方法不仅提升了模型性能,还提高了推理效率,同时为降低API调用成本和无标签强化学习提供了新思路。