信息技术监控和分析厂商Splunk今天宣布计划收购Flowmill,这家位于美国加州帕洛阿尔托的初创公司,提供的软件平台可以帮助企业更好地了解其网络。
这次收购预计将在2021年1月31日完成,交易条款未对外公布。
在大型云和本地环境中,排除网络故障往往是一件很棘手的事情,因为很难将数据流量与生成流量的系统相匹配。Flowmill的监控平台让流量来源查找变得更为容易一些,帮助IT团队更快地解决问题。
该平台在后台采用给了一种名为eBPF的Linux内核组件,将数据包与系统和应用进行匹配(Linux是目前企业IT环境中使用最广泛的操作系统)。反过来,该平台的eBPF组件可以将代码直接部署到操作系统内核中,收集有关上层应用的低层级活动数据,并通过这些低数据确定是哪些特定工作负载导致了网络故障的发生。
加速故障排除的技术能力并非Splunk收购Flowmill的唯一原因。Flowmill让企业可以部署Flowmill平台而无需修改他们想要监控的应用或网络,从而避免了传统工具各种耗时的要求。而且Flowmill表示,其平台可以用于降低公有云的网络成本,因为它可以更容易识别那些占用大量带宽的应用。
Splunk计划把Flowmill的技术整合到自己的Observability Suite产品包中,用于监控基础设施和应用。这次收购将帮助Splunk向其功能集中增加基于eBPF的监控功能,而这正是眼下竞争对手和风投方越来越关注的一个领域。就在上个月,一家名为Pixie Labs的初创公司走出隐身模式,凭借一个基于eBPF的Kubernetes环境监控平台获得了915万美元的资金。
此次收购Flowmill只是Splunk最近一系列初创企业战略性收购中的最新一笔。上个月,Splunk收购了应用监控公司Plumbr和网站性能优化专业公司Rigor,将自身技术能力扩展到这两家初创公司所在的领域。
好文章,需要你的鼓励
谷歌地图将集成Gemini人工智能技术,旨在将其升级为一个"全知型副驾驶"助手。这一整合将大幅提升地图服务的智能化水平,为用户提供更加个性化和全面的导航体验。通过AI技术的加持,谷歌地图有望在路线规划、地点推荐和实时信息服务等方面实现重大突破。
这项由圣母大学和IBM研究院联合开展的研究,开发出了名为DeepEvolve的AI科学助手系统,能够像人类科学家一样进行深度文献研究并将创新想法转化为可执行的算法程序。该系统突破了传统AI要么只能改进算法但缺乏创新、要么只能提出想法但无法实现的局限,在化学、生物学、数学等九个科学领域的测试中都实现了显著的算法性能提升,为AI辅助科学发现开辟了新的道路。
微软研究人员发布新的仿真环境来测试AI智能体,研究显示当前智能体模型容易受到操纵。该名为"Magentic Marketplace"的合成平台让客户智能体与商家智能体进行交互实验。测试包括GPT-4o、GPT-5和Gemini-2.5-Flash等模型,发现智能体在面临过多选择时效率下降,且在协作方面表现不佳。研究揭示了AI智能体在无监督环境下的性能问题。
卡内基梅隆大学研究团队通过3331次大规模实验,系统揭示了代码训练如何提升AI推理能力。研究发现,代码的结构特性比语义内容更重要,适当的抽象形式(如伪代码)可以达到与原始代码相同的效果。不同编程语言产生差异化影响:低抽象语言有利于数学推理,Python更适合自然语言任务。这些发现为AI训练数据的科学化设计提供了重要指导。