信息技术监控和分析厂商Splunk今天宣布计划收购Flowmill,这家位于美国加州帕洛阿尔托的初创公司,提供的软件平台可以帮助企业更好地了解其网络。
这次收购预计将在2021年1月31日完成,交易条款未对外公布。
在大型云和本地环境中,排除网络故障往往是一件很棘手的事情,因为很难将数据流量与生成流量的系统相匹配。Flowmill的监控平台让流量来源查找变得更为容易一些,帮助IT团队更快地解决问题。
该平台在后台采用给了一种名为eBPF的Linux内核组件,将数据包与系统和应用进行匹配(Linux是目前企业IT环境中使用最广泛的操作系统)。反过来,该平台的eBPF组件可以将代码直接部署到操作系统内核中,收集有关上层应用的低层级活动数据,并通过这些低数据确定是哪些特定工作负载导致了网络故障的发生。
加速故障排除的技术能力并非Splunk收购Flowmill的唯一原因。Flowmill让企业可以部署Flowmill平台而无需修改他们想要监控的应用或网络,从而避免了传统工具各种耗时的要求。而且Flowmill表示,其平台可以用于降低公有云的网络成本,因为它可以更容易识别那些占用大量带宽的应用。
Splunk计划把Flowmill的技术整合到自己的Observability Suite产品包中,用于监控基础设施和应用。这次收购将帮助Splunk向其功能集中增加基于eBPF的监控功能,而这正是眼下竞争对手和风投方越来越关注的一个领域。就在上个月,一家名为Pixie Labs的初创公司走出隐身模式,凭借一个基于eBPF的Kubernetes环境监控平台获得了915万美元的资金。
此次收购Flowmill只是Splunk最近一系列初创企业战略性收购中的最新一笔。上个月,Splunk收购了应用监控公司Plumbr和网站性能优化专业公司Rigor,将自身技术能力扩展到这两家初创公司所在的领域。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
微软研究院提出潜在分区网络(LZN),首次实现生成建模、表示学习和分类任务的真正统一。该框架通过共享高斯潜在空间和创新的潜在对齐机制,让原本独立的AI任务协同工作。实验显示LZN不仅能增强现有模型性能,还能独立完成各类任务,多任务联合训练效果更是超越单独训练。这项研究为构建下一代通用AI系统提供了新的架构思路。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
上海AI实验室开发的VLAC模型让机器人首次具备真实世界自主学习能力。该系统如同给机器人配备智能导师,能实时评估动作效果并从中学习。在四个操作任务测试中,机器人成功率从30%提升至90%,仅需200次练习。技术结合视觉、语言理解和动作生成,支持跨场景适应和人机协作,为家庭服务、医疗护理等领域应用奠定基础。