亚马逊网络服务公司(AWS)为其工业物联网产品阵容增添了一系列新工具,旨在提高机器性能和正常运行时间。
首先,该公司宣布推出Amazon Monitron,这是一种针对目前还没有现成的传感器网络的客户的状态监控服务。该系统及其传感器阵列可以检测关键设备上的潜在故障,因此可以执行预测性维护程序。
对于那些已经拥有传感器网络的客户,AWS引入了基于API的机器学习服务,该服务名为Amazon Lookout for Equipment,它可以作为一条路径,将传感器的数据发送到AWS进行预测性建模。和Monitron一样,Lookout for Equipment可以分析传感器数据以检测工业机器的异常行为。
该服务可以汇总工业设备的历史事件序列数据和过往的维护事件,自动测试可能的组合,并且建立一个优化过的机器学习模型来学习设备的正常行为。通过这里,客户可以执行机器学习推理以检测设备的异常行为,并将结果集成到现有的监控软件之中进行可视化或者报警。
AWS推出的其他工业物联网产品还包括AWS Panorama,这是一种新的硬件设备,让企业可以为现有的摄像头增加计算机视觉,并且将AWS的计算机视觉扩展到边缘。一旦连接到网络上之后,AWS Panorama设备将自动地识别摄像头的视频流并对其运行计算机视觉模型。
同时,AWS Panorama SDK意在帮助硬件供应商构建可以在边缘运行机器视觉模型的摄像头。
亚马逊还推出了Amazon Lookout for Vision,这是一种新的检查软件,它使用了机器学习技术,每小时可以处理数千张图片,通过这种方式查找缺陷和异常。
AWS机器学习副总裁Swami Sivasubramanian表示:“工业和制造业客户一直面临着来自股东、客户、政府和竞争对手的压力,他们要求降低成本,提高质量并保持合规性……我们很高兴为客户提供五种新的、工业用途的机器学习服务。这些服务非常易于安装、部署、启动和运行,并将云连接到边缘,可以帮助我们的工业客户打造未来的智能工厂。”
好文章,需要你的鼓励
TAE Technologies在最新一轮投资中获1.5亿美元,累计融资约18亿美元。公司利用 AI 技术优化融合反应堆设计,目标于 2030 年代商业化发电,谷歌等巨头均参与合作。
澳大利亚国立大学和广湾大学研究团队开发的VAU-R1系统通过强化学习显著提升了视频异常理解能力。该研究不仅创建了第一个专门用于训练和评估视频异常理解的思维链基准数据集VAU-Bench,还提出了一种数据高效的强化微调框架,使模型能更准确地回答问题、定位异常时间段并提供连贯解释。实验结果表明,VAU-R1在多项选择题准确率和时间定位方面比传统方法有显著提升,为安全监控、灾害预警等领域的智能系统带来了新的可能性。
Nvidia 正在全球数据中心推广 AI 芯片,其最新 Blackwell 架构在 MLPerf 基准测试中获得最高性能,大幅加速下一代 AI 应用的训练与部署。
这项研究由香港中文大学团队提出了视频-3D几何大语言模型(VG LLM),一种无需依赖显式3D数据输入,仅通过普通视频就能理解3D世界的创新方法。通过集成3D视觉几何编码器,该模型能从视频序列中提取3D先验信息,显著提升空间推理能力。实验表明,该4B参数模型在多项3D场景理解和空间推理任务上超越了现有技术,甚至在VSI-Bench评估中胜过Gemini-1.5-Pro。