亚马逊网络服务公司(AWS)为其工业物联网产品阵容增添了一系列新工具,旨在提高机器性能和正常运行时间。
首先,该公司宣布推出Amazon Monitron,这是一种针对目前还没有现成的传感器网络的客户的状态监控服务。该系统及其传感器阵列可以检测关键设备上的潜在故障,因此可以执行预测性维护程序。
对于那些已经拥有传感器网络的客户,AWS引入了基于API的机器学习服务,该服务名为Amazon Lookout for Equipment,它可以作为一条路径,将传感器的数据发送到AWS进行预测性建模。和Monitron一样,Lookout for Equipment可以分析传感器数据以检测工业机器的异常行为。
该服务可以汇总工业设备的历史事件序列数据和过往的维护事件,自动测试可能的组合,并且建立一个优化过的机器学习模型来学习设备的正常行为。通过这里,客户可以执行机器学习推理以检测设备的异常行为,并将结果集成到现有的监控软件之中进行可视化或者报警。
AWS推出的其他工业物联网产品还包括AWS Panorama,这是一种新的硬件设备,让企业可以为现有的摄像头增加计算机视觉,并且将AWS的计算机视觉扩展到边缘。一旦连接到网络上之后,AWS Panorama设备将自动地识别摄像头的视频流并对其运行计算机视觉模型。
同时,AWS Panorama SDK意在帮助硬件供应商构建可以在边缘运行机器视觉模型的摄像头。
亚马逊还推出了Amazon Lookout for Vision,这是一种新的检查软件,它使用了机器学习技术,每小时可以处理数千张图片,通过这种方式查找缺陷和异常。
AWS机器学习副总裁Swami Sivasubramanian表示:“工业和制造业客户一直面临着来自股东、客户、政府和竞争对手的压力,他们要求降低成本,提高质量并保持合规性……我们很高兴为客户提供五种新的、工业用途的机器学习服务。这些服务非常易于安装、部署、启动和运行,并将云连接到边缘,可以帮助我们的工业客户打造未来的智能工厂。”
好文章,需要你的鼓励
新加坡国立大学研究人员开发出名为AiSee的可穿戴辅助设备,利用Meta的Llama模型帮助视障人士"看见"周围世界。该设备采用耳机形态,配备摄像头作为AI伴侣处理视觉信息。通过集成大语言模型,设备从简单物体识别升级为对话助手,用户可进行追问。设备运行代理AI框架,使用量化技术将Llama模型压缩至10-30亿参数在安卓设备上高效运行,支持离线处理敏感文档,保护用户隐私。
阿里巴巴联合浙江大学开发的OmniThink框架让AI学会像人类一样慢思考写作。通过信息树和概念池的双重架构,系统能够动态检索信息、持续反思,突破了传统AI写作内容浅薄重复的局限。实验显示该方法在文章质量各维度均显著超越现有最强基线,知识密度提升明显,为长文本生成研究开辟了新方向。
OpenAI推出新AI模型GPT-5-Codex,能够在无用户协助下完成数小时的编程任务。该模型是GPT-5的改进版本,使用额外编码数据训练。测试显示,GPT-5-Codex可独立工作超过7小时,能自动发现并修复编码错误。在重构基准测试中得分51.3%,比GPT高出17%以上。模型可根据任务难度调整处理时间,简单请求处理速度显著提升。目前已在ChatGPT付费计划中提供。
腾讯混元3D 2.0是一个革命性的3D生成系统,能够从单张图片生成高质量的带纹理3D模型。该系统包含形状生成模块Hunyuan3D-DiT和纹理合成模块Hunyuan3D-Paint,采用创新的重要性采样和多视角一致性技术,在多项评估指标上超越现有技术,并提供用户友好的制作平台。作为开源项目,它将大大降低3D内容创作门槛,推动3D技术的普及应用。