亚马逊网络服务公司(AWS)为其工业物联网产品阵容增添了一系列新工具,旨在提高机器性能和正常运行时间。
首先,该公司宣布推出Amazon Monitron,这是一种针对目前还没有现成的传感器网络的客户的状态监控服务。该系统及其传感器阵列可以检测关键设备上的潜在故障,因此可以执行预测性维护程序。
对于那些已经拥有传感器网络的客户,AWS引入了基于API的机器学习服务,该服务名为Amazon Lookout for Equipment,它可以作为一条路径,将传感器的数据发送到AWS进行预测性建模。和Monitron一样,Lookout for Equipment可以分析传感器数据以检测工业机器的异常行为。
该服务可以汇总工业设备的历史事件序列数据和过往的维护事件,自动测试可能的组合,并且建立一个优化过的机器学习模型来学习设备的正常行为。通过这里,客户可以执行机器学习推理以检测设备的异常行为,并将结果集成到现有的监控软件之中进行可视化或者报警。
AWS推出的其他工业物联网产品还包括AWS Panorama,这是一种新的硬件设备,让企业可以为现有的摄像头增加计算机视觉,并且将AWS的计算机视觉扩展到边缘。一旦连接到网络上之后,AWS Panorama设备将自动地识别摄像头的视频流并对其运行计算机视觉模型。
同时,AWS Panorama SDK意在帮助硬件供应商构建可以在边缘运行机器视觉模型的摄像头。
亚马逊还推出了Amazon Lookout for Vision,这是一种新的检查软件,它使用了机器学习技术,每小时可以处理数千张图片,通过这种方式查找缺陷和异常。
AWS机器学习副总裁Swami Sivasubramanian表示:“工业和制造业客户一直面临着来自股东、客户、政府和竞争对手的压力,他们要求降低成本,提高质量并保持合规性……我们很高兴为客户提供五种新的、工业用途的机器学习服务。这些服务非常易于安装、部署、启动和运行,并将云连接到边缘,可以帮助我们的工业客户打造未来的智能工厂。”
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。