红帽近日宣布了今年的首次收购——收购容器和Kubernetes威胁检测公司StackRox。红帽表示,希望将StackRox的安全工具与其OpenShift平台进行集成,使容器工作负载更加安全。OpenShift是Red Hat版本的Kubernetes容器编排软件,而容器是一种可移动的、自包含的软件环境,Kubernetes用于管理大型容器部署。
StackRox成立于2014年,主要为云原生应用、容器、无服务器计算和Kubernetes提供持续高级威胁检测,帮助企业大规模保护容器和Kubernetes环境,并帮助用户检测和响应安全威胁。该平台的关键功能之一是帮助安全团队和DevOps团队在从构建到部署再到运行时的整个容器生命周期中实施安全和合规性策略。
StackRox平台通过部署用于策略实施和直接将数据收集到基础设施中的组件,提供对Kubernetes集群的可见性。
红帽表示,将通过收购StackRox扩展和完善Kubernetes的控件,并安全性转移到容器构建和持续集成/持续开发管道中,从而提高云原生工作负载的安全性。红帽公司首席执行官Paul Cormier在声明中表示:“确保Kubernetes工作负载和基础设施的安全性是不能一蹴而就的。安全措施是所有部署中一个不可或缺的部分,不是事后才去做的。Red Hat将StackRox的Kubernetes原生能力添加到OpenShift分层安全方法中,进一步实现了我们的使命,也就是跨开放混合云、跨IT部署为所有企业组织带来产品就绪的开放式创新。”
Pund-IT分析师Charles King称,StackRox最重要的功能之一就是它的策略引擎,该引擎嵌入Kubernetes集群中,可以实施最佳安全实践和配置管理。他说:“这将会完善OpenShift的分层安全性,增强红帽的容器解决方案和服务。因为我们在2020年看到,越来越多的网络攻击和数据泄露事件突显了安全性的重要,所以这次收购显得特别及时。”
StackRox首席执行官Kamal Shah表示,这次收购证明了公司专注于Kubernetes安全的战略决策已经获得回报。他在博客中写道:“虽然当下这个趋势已经非常明朗,但在当时却并非如此。追溯到2020年,Kubernetes已经成为云原生应用和混合云环境标配的操作系统了。”Shah说,此次收购,再加上红帽的资源,将帮助StackRox更快地发展并实现其路线图。
红帽云平台高级副总裁Ashesh Badani在另一篇博客文章中表示,Red Hat计划在收购完成后开放StackRox技术的源代码。他向StackRox的客户保证,将继续支持OpenShift之外的其他Kubernetes平台,例如Amazon Elastic Kubernetes Service、Microsoft Azure Kubernetes Service和Google Kubernetes Engine。
红帽还将大力支持由StackRox领导的开源KubeLinter社区。Constellation Research分析师Holger Mueller认为,随着Kubernetes生态系统的逐渐成熟,安全性将变得越来越重要。对于Red Hat来说,利用StackRox增强安全能力并为用户提供更好的整体容器管理功能是很有意义的。重要的是,StackRox支持所有主流云平台,因此对红帽和IBM来说,可以更容易地快速上线其服务。
此次收购的价格未对外透露。
好文章,需要你的鼓励
Adobe 周二宣布推出适用于 Android 系统的 Photoshop 应用测试版,提供与桌面版相似的图像编辑工具和 AI 功能,初期免费使用,旨在吸引更多偏好手机创作的年轻用户。
弗吉尼亚大学研究团队开发了TruthHypo基准和KnowHD框架,用于评估大语言模型生成生物医学假设的真实性及检测幻觉。研究发现大多数模型在生成真实假设方面存在困难,只有GPT-4o达到60%以上的准确率。通过分析推理步骤中的幻觉,研究证明KnowHD提供的基础依据分数可有效筛选真实假设。人类评估进一步验证了KnowHD在识别真实假设和加速科学发现方面的价值,为AI辅助科学研究提供了重要工具。
文章详细介绍了Character.AI这款主要面向娱乐、角色扮演和互动叙事的AI聊天工具的原理、用户群体、特色功能以及面临的法律与伦理争议,同时揭示了其新推出的视频和游戏互动体验。
亚马逊Nova责任AI团队与亚利桑那州立大学共同开发了AIDSAFE,这是一种创新的多代理协作框架,用于生成高质量的安全策略推理数据。不同于传统方法,AIDSAFE通过让多个AI代理进行迭代讨论和精炼,产生全面且准确的安全推理链,无需依赖昂贵的高级推理模型。实验证明,使用此方法生成的数据训练的语言模型在安全泛化和抵抗"越狱"攻击方面表现卓越,同时保持了实用性。研究还提出了"耳语者"代理技术,解决了偏好数据创建中的困难,为直接策略优化提供了更有效的训练材料。