红帽近日宣布了今年的首次收购——收购容器和Kubernetes威胁检测公司StackRox。红帽表示,希望将StackRox的安全工具与其OpenShift平台进行集成,使容器工作负载更加安全。OpenShift是Red Hat版本的Kubernetes容器编排软件,而容器是一种可移动的、自包含的软件环境,Kubernetes用于管理大型容器部署。
StackRox成立于2014年,主要为云原生应用、容器、无服务器计算和Kubernetes提供持续高级威胁检测,帮助企业大规模保护容器和Kubernetes环境,并帮助用户检测和响应安全威胁。该平台的关键功能之一是帮助安全团队和DevOps团队在从构建到部署再到运行时的整个容器生命周期中实施安全和合规性策略。
StackRox平台通过部署用于策略实施和直接将数据收集到基础设施中的组件,提供对Kubernetes集群的可见性。
红帽表示,将通过收购StackRox扩展和完善Kubernetes的控件,并安全性转移到容器构建和持续集成/持续开发管道中,从而提高云原生工作负载的安全性。红帽公司首席执行官Paul Cormier在声明中表示:“确保Kubernetes工作负载和基础设施的安全性是不能一蹴而就的。安全措施是所有部署中一个不可或缺的部分,不是事后才去做的。Red Hat将StackRox的Kubernetes原生能力添加到OpenShift分层安全方法中,进一步实现了我们的使命,也就是跨开放混合云、跨IT部署为所有企业组织带来产品就绪的开放式创新。”
Pund-IT分析师Charles King称,StackRox最重要的功能之一就是它的策略引擎,该引擎嵌入Kubernetes集群中,可以实施最佳安全实践和配置管理。他说:“这将会完善OpenShift的分层安全性,增强红帽的容器解决方案和服务。因为我们在2020年看到,越来越多的网络攻击和数据泄露事件突显了安全性的重要,所以这次收购显得特别及时。”
StackRox首席执行官Kamal Shah表示,这次收购证明了公司专注于Kubernetes安全的战略决策已经获得回报。他在博客中写道:“虽然当下这个趋势已经非常明朗,但在当时却并非如此。追溯到2020年,Kubernetes已经成为云原生应用和混合云环境标配的操作系统了。”Shah说,此次收购,再加上红帽的资源,将帮助StackRox更快地发展并实现其路线图。
红帽云平台高级副总裁Ashesh Badani在另一篇博客文章中表示,Red Hat计划在收购完成后开放StackRox技术的源代码。他向StackRox的客户保证,将继续支持OpenShift之外的其他Kubernetes平台,例如Amazon Elastic Kubernetes Service、Microsoft Azure Kubernetes Service和Google Kubernetes Engine。
红帽还将大力支持由StackRox领导的开源KubeLinter社区。Constellation Research分析师Holger Mueller认为,随着Kubernetes生态系统的逐渐成熟,安全性将变得越来越重要。对于Red Hat来说,利用StackRox增强安全能力并为用户提供更好的整体容器管理功能是很有意义的。重要的是,StackRox支持所有主流云平台,因此对红帽和IBM来说,可以更容易地快速上线其服务。
此次收购的价格未对外透露。
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。