全球领先的边缘计算解决方案提供商凌华科技推出高度紧凑且支持GPU的全新DLAPx86系列深度学习加速平台,是市场上最紧凑的GPU深入学习加速平台。DLAPx86系列可用于部署边缘处的大规模深度学习,采集边缘产生的数据并采取行动。DLAPx86系列针对大规模边缘AI布署所设计,可将深度学习带进终端,拉近与现场资料、现场决策应变的距离。该平台的优化配置可加速需要大量内存的计算密集型AI推理和任务学习,助力各行业应用的AI部署。
凌华科技嵌入式平台和模块产品中心协理蔡雨利表示:“DLAPx86专为大型多层网络以及复杂数据集设计。凌华科技DLAP系列为深度学习应用提供的灵活性是其核心价值所在。基于不同应用的神经网络和AI推理速度需求,架构师可组合出最适化的CPU与 GPU处理器配置,提高产生每单位投资的最高效能。”
DLAPx86系列优势:
DLAPx86在边缘AI应用中在效能、体积、重量、功耗等设计取得最佳平衡,将每瓦效能、每单位投资效能极大化,助力医疗、制造业、交通运输和其他领域的发展。应用案例包括:
好文章,需要你的鼓励
Xbox 部门推出了名为 Muse 的生成式 AI 模型,旨在为游戏创造视觉效果和玩法。这一举措反映了微软全面拥抱 AI 技术的战略,尽管游戏开发者对 AI 持谨慎态度。Muse 不仅可能提高游戏开发效率,还有望实现老游戏的现代化改造,但其实际效果和对行业的影响仍有待观察。
Sonar收购AutoCodeRover,旨在通过自主AI代理增强其代码质量工具。这项收购将使Sonar客户能够自动化调试和问题修复等任务,让开发者将更多时间用于改进应用程序而非修复bug。AutoCodeRover的AI代理能够自主修复有问题的代码,将与Sonar的工具集成,提高开发效率并降低成本。
人工智能正在推动数据中心的变革。为满足 AI workload 的需求,数据中心面临前所未有的电力消耗增长、散热压力和设备重量挑战。应对这些挑战需要创新的解决方案,包括 AI 专用硬件、可再生能源、液冷技术等。同时,数据中心还需平衡监管压力和社区关切。未来数据中心的发展将决定 AI 技术能否实现其变革性潜力。