IBM的研究人员设计了他们所谓的世界上第一块人工智能加速器芯片,该芯片基于高性能7纳米技术,同时实现了高水平的能源效率。
参加此项研究的IBM研究人员Ankur Agrawal和Kailash Gopalakrishnan在互联网固态电路虚拟大会(International Solid-State Circuits Virtual Conference)推出了这款四核芯片,并且在最近的一篇博客文章中,披露了更多关于该技术的细节。尽管仍处于研究阶段,这款加速器芯片有望能够支持各种人工智能模型,并实现“领先的”电源效率。Agrawal和Gopalakrishnan表示:“这种节能的人工智能硬件加速器可以显著提高计算能力,包括在混合云环境中也是如此,而且不需要消耗大量的能量。”
人工智能加速器是一类硬件,顾名思义,这种硬件就是为了加速人工智能模型而设计的。通过提高算法的性能,这类芯片可以提升自然语言处理或者计算机视觉之类的数据密集型应用的结果。
但是,随着人工智能模型复杂程度的增加,支撑算法系统的硬件运行所需的电量也随之增加。这两位IBM的研究人员写道:“从历史上看,该领域已经接受了这样的关联:如果计算的需求量很大,那么需要的能耗也会很大。”
IBM的研究部门一直在为芯片创造新的设计,让它们能够处理复杂的算法而又不会增加碳足迹。挑战的关键在于设计出一种不需要消耗过高能量,但又不会牺牲计算能力的技术。
一种方法是在加速器芯片中采用降低精度的技术,这些技术已被证明可以帮助深度学习训练和推理,同时又只需要更少的硅面积和能耗,这意味着训练人工智能模型所需的时间和能耗可以显著降低。
IBM研究人员展示的新芯片针对低精度培训进行了高度优化。它是第一款采用被称为混合FP8格式的超低精度技术的硅芯片。FP8格式是IBM开发的一种八位训练技术,可以在图像分类、语音和对象检测等深度学习应用中保持模型精度。
此外,由于配备了集成的电源管理功能,该加速器芯片可以将自身性能最大化,例如,通过在高功耗的计算阶段降速来实现这一点。
该芯片还具有很高的利用率,实验表明训练利用率超过80%,推理利用率达到60%——据IBM的研究人员称,这一数字远远高于典型的GPU利用率(通常低于30%)。这一特性再次转化为更好的应用性能,这也是该芯片设计中提高能效的关键部分。
Agrawal和Gopalakrishnan表示,这些特性加在一起,让这款芯片不仅在能效方面“最先进”,而且在性能方面也是“最先进”的。研究人员们将该技术同其他芯片进行了比较,得出了结论:“我们芯片的性能和能效超过了其他专用的推理和训练芯片。”现在,研究人员希望这些设计可以扩大规模并进行商业部署,以支持复杂的人工智能应用。包括从语音到文本人工智能服务和金融交易欺诈检测等大规模云深度培训模型。
边缘应用也可能会找到IBM新技术的用途,自动驾驶车辆、安全摄像头和移动电话都可能会受益于功耗更低的高性能人工智能芯片。
研究人员们表示:“为了推动人工智能淘金热,我们一直在改善人工智能硬件技术的核心:支持深度学习的数字化人工智能核心,这是人工智能的关键推动因素。” 随着人工智能系统在所有行业中的广泛应用,这种承诺很难被视而不见。
好文章,需要你的鼓励
研究人员基于Meta前首席AI科学家Yann LeCun提出的联合嵌入预测架构,开发了名为JETS的自监督时间序列基础模型。该模型能够处理不规则的可穿戴设备数据,通过学习预测缺失数据的含义而非数据本身,成功检测多种疾病。在高血压检测中AUROC达86.8%,心房扑动检测达70.5%。研究显示即使只有15%的参与者有标注医疗记录,该模型仍能有效利用85%的未标注数据进行训练,为利用不完整健康数据提供了新思路。
西湖大学等机构联合发布TwinFlow技术,通过创新的"双轨道"设计实现AI图像生成的革命性突破。该技术让原本需要40-100步的图像生成过程缩短到仅需1步,速度提升100倍且质量几乎无损。TwinFlow采用自我对抗机制,无需额外辅助模型,成功应用于200亿参数超大模型,在GenEval等标准测试中表现卓越,为实时AI图像生成应用开辟了广阔前景。
AI云基础设施提供商Coreweave今年经历了起伏。3月份IPO未达预期,10月收购Core Scientific计划因股东反对而搁浅。CEO Michael Intrator为公司表现辩护,称正在创建云计算新商业模式。面对股价波动和高负债质疑,他表示这是颠覆性创新的必然过程。公司从加密货币挖矿转型为AI基础设施提供商,与微软、OpenAI等巨头合作。对于AI行业循环投资批评,Intrator认为这是应对供需剧变的合作方式。
中山大学等机构联合开发的RealGen框架成功解决了AI生成图像的"塑料感"问题。该技术通过"探测器奖励"机制,让AI在躲避图像检测器识别的过程中学会制作更逼真照片。实验显示,RealGen在逼真度评测中大幅领先现有模型,在与真实照片对比中胜率接近50%,为AI图像生成技术带来重要突破。